

 Navigation

 	
 next

 	pycsw 1.8.1 documentation

pycsw 1.8.1 Documentation

	Author:	Tom Kralidis

	Contact:	tomkralidis at gmail.com

	Release:	1.8.1

	Date:	2014-05-21

	Introduction

	Features
	Standards Support

	Supported Operations

	Supported Output Formats

	Supported Output Schemas

	Supported Sorting Functionality

	Supported Filters

	Installation
	System Requirements

	Installing from Source

	Installing from the Python Package Index (PyPi)

	Installing from OpenSUSE Build Service

	Installing on Ubuntu/Xubuntu/Kubuntu

	Running on Windows

	Security

	Running on WSGI

	Configuration
	Alternate Configurations

	Administration
	Metadata Repository Setup

	Supported Information Models

	Setting up the Database

	Loading Records

	Exporting the Repository

	Optimizing the Database

	Database Specific Notes

	Mapping to an Existing Repository

	Distributed Searching
	Scenario: Federated Search

	Search/Retrieval via URL (SRU) Support

	OpenSearch Support
	Description Document

	SOAP

	XML Sitemaps

	Transactions
	Supported Resource Types

	Harvesting

	Transactions

	Repository Filters
	Scenario: One Database, Many Views

	Profile Plugins
	Overview

	Requirements

	Abstract Base Class Definition

	Enabling Profiles

	Testing

	Supported Profiles
	ISO Metadata Application Profile (1.0.0)

	INSPIRE Extension

	CSW-ebRIM Registry Service - Part 1: ebRIM profile of CSW

	Output Schema Plugins
	Overview

	Requirements

	Implementing a new outputschema

	Testing

	GeoNode Configuration
	GeoNode Setup

	Open Data Catalog Configuration
	Open Data Catalog Setup

	CKAN Configuration
	CKAN Setup

	Testing
	OGC CITE

	Tester

	Cataloguing and Metadata Tools
	CSW Clients

	CSW Servers

	Metadata Editing Tools

	Support
	Community

	Contributing to pycsw
	GitHub

	Code Overview

	Documentation

	Bugs

	Forking pycsw

	Development

	GitHub Commit Access

	License

	Committers

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Introduction

pycsw is an OGC CSW server implementation written in Python.

Features

	certified OGC Compliant [http://www.opengeospatial.org/resource/products/details/?pid=1104] and OGC Reference Implementation

	harvesting support for WMS, WFS, WCS, WPS, WAF, CSW, SOS

	implements INSPIRE Discovery Services 3.0 [http://inspire.jrc.ec.europa.eu/documents/Network_Services/TechnicalGuidance_DiscoveryServices_v3.0.pdf]

	implements ISO Metadata Application Profile 1.0.0 [http://portal.opengeospatial.org/files/?artifact_id=21460]

	implements FGDC CSDGM Application Profile for CSW 2.0 [http://portal.opengeospatial.org/files/?artifact_id=16936]

	implements the Search/Retrieval via URL (SRU [http://www.loc.gov/standards/sru/]) search protocol

	implements Full Text Search capabilities

	implements OpenSearch

	supports ISO, Dublin Core, DIF, FGDC and Atom metadata models

	CGI or WSGI deployment

	simple configuration

	transactional capabilities (CSW-T)

	flexible repository configuration

	GeoNode [http://geonode.org/] connectivity

	Open Data Catalog [https://github.com/azavea/Open-Data-Catalog/] connectivity

	CKAN [http://ckan.org/] connectivity

	federated catalogue distributed searching

	realtime XML Schema validation

	extensible profile plugin architecture

Standards Support

	Standard
	Version(s)

	OGC CSW [http://www.opengeospatial.org/standards/cat]
	2.0.2

	OGC Filter [http://www.opengeospatial.org/standards/filter]
	1.1.0

	OGC OWS Common [http://www.opengeospatial.org/standards/common]
	1.0.0

	OGC GML [http://www.opengeospatial.org/standards/gml]
	3.1.1

	OGC SFSQL [http://www.opengeospatial.org/standards/sfs]
	1.2.1

	Dublin Core [http://www.dublincore.org/]
	1.1

	SOAP [http://www.w3.org/TR/soap/]
	1.2

	ISO 19115 [http://www.iso.org/iso/catalogue_detail.htm?csnumber=26020]
	2003

	ISO 19139 [http://www.iso.org/iso/catalogue_detail.htm?csnumber=32557]
	2007

	ISO 19119 [http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39890]
	2005

	NASA DIF [http://gcmd.gsfc.nasa.gov/add/difguide/index.html]
	9.7

	FGDC CSDGM [http://www.fgdc.gov/metadata/csdgm]
	1998

	SRU [http://www.loc.gov/standards/sru/]
	1.1

	A9 OpenSearch [http://www.opensearch.org/Home]
	1.1

Supported Operations

	Request
	Optionality
	Supported
	HTTP method binding(s)

	GetCapabilities
	mandatory
	yes
	GET (KVP) / POST (XML) / SOAP

	DescribeRecord
	mandatory
	yes
	GET (KVP) / POST (XML) / SOAP

	GetRecords
	mandatory
	yes
	GET (KVP) / POST (XML) / SOAP

	GetRecordById
	optional
	yes
	GET (KVP) / POST (XML) / SOAP

	GetRepositoryItem
	optional
	yes
	GET (KVP)

	GetDomain
	optional
	yes
	GET (KVP) / POST (XML) / SOAP

	Harvest
	optional
	yes
	GET (KVP) / POST (XML) / SOAP

	Transaction
	optional
	yes
	POST (XML) / SOAP

Note

Asynchronous processing supported for GetRecords and Harvest requests (via csw:ResponseHandler)

Note

Supported Harvest Resource Types are listed in Transactions

Supported Output Formats

	XML (default)

	JSON

Supported Output Schemas

	Dublin Core

	ISO 19139

	FGDC CSDGM

	NASA DIF

	Atom

Supported Sorting Functionality

	ogc:SortBy

	ascending or descending

	aspatial (queryable properties)

	spatial (geometric area)

Supported Filters

Full Text

	csw:AnyText

Geometry Operands

	gml:Point

	gml:LineString

	gml:Polygon

	gml:Envelope

Note

Coordinate transformations are supported

Spatial Operators

	BBOX

	Beyond

	Contains

	Crosses

	Disjoint

	DWithin

	Equals

	Intersects

	Overlaps

	Touches

	Within

Logical Operators

	Between

	EqualTo

	LessThanEqualTo

	GreaterThan

	Like

	LessThan

	GreaterThanEqualTo

	NotEqualTo

	NullCheck

Functions

	length

	lower

	ltrim

	rtrim

	trim

	upper

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Installation

System Requirements

pycsw is written in Python [http://python.org], and works with (tested) version 2.6 and 2.7

pycsw requires the following Python supporting libraries:

	lxml [http://lxml.de/] for XML support

	SQLAlchemy [http://www.sqlalchemy.org/] for database bindings

	pyproj [http://code.google.com/p/pyproj/] for coordinate transformations

	Shapely [http://toblerity.github.io/shapely/] for spatial query / geometry support

	OWSLib [https://github.com/geopython/OWSLib] for CSW client and metadata parser

Note

You can install these dependencies via easy_install [http://packages.python.org/distribute/easy_install.html] or pip [http://www.pip-installer.org]

Note

For GeoNode or Open Data Catalog deployments, SQLAlchemy is not required

Installing from Source

Download the latest stable version or fetch from Git.

For Developers and the Truly Impatient

The 4 minute install:

$ virtualenv pycsw && cd pycsw && . bin/activate
$ git clone https://github.com/geopython/pycsw.git && cd pycsw
$ pip install -e . && pip install -r requirements-standalone.txt
$ cp default-sample.cfg default.cfg
$ vi default.cfg
adjust paths in
- server.home
- repository.database
set server.url to http://localhost:8000/
$ python csw.wsgi
$ curl http://localhost:8000/?service=CSW&version=2.0.2&request=GetCapabilities

The Quick and Dirty Way

$ git clone git://github.com/geopython/pycsw.git

Ensure that CGI is enabled for the install directory. For example, on Apache, if pycsw is installed in /srv/www/htdocs/pycsw (where the URL will be http://host/pycsw/csw.py), add the following to httpd.conf:

<Location /pycsw/>
 Options FollowSymLinks +ExecCGI
 Allow from all
 AddHandler cgi-script .py
</Location>

Note

If pycsw is installed in cgi-bin, this should work as expected. In this case, the tests application must be moved to a different location to serve static HTML documents.

Make shure, you have all the dependences from requirements.txt and requirements-standalone.txt

The Clean and Proper Way

$ git clone git://github.com/geopython/pycsw.git
$ python setup.py build
$ python setup.py install

At this point, pycsw is installed as a library and requires a CGI csw.py or WSGI csw.wsgi script to be served into your web server environment (see below for WSGI configuration/deployment).

Installing from the Python Package Index (PyPi)

easy_install or pip will do the trick
$ easy_install pycsw
or
$ pip install pycsw

Installing from OpenSUSE Build Service

In order to install the OBS package in openSUSE 12.3, one can run the following commands as user root:

zypper -ar http://download.opensuse.org/repositories/Application:/Geo/openSUSE_12.3/ GEO
zypper -ar http://download.opensuse.org/repositories/devel:/languages:/python/openSUSE_12.3/ python
zypper refresh
zypper install python-pycsw pycsw-cgi

For earlier openSUSE versions change 12.3 with 12.2. For future openSUSE version use Factory.

An alternative method is to use the One-Click Installer [http://software.opensuse.org/search?q=pycsw&baseproject=openSUSE%3A12.3&lang=en&include_home=true&exclude_debug=true].

Installing on Ubuntu/Xubuntu/Kubuntu

In order to install pycsw to an Ubuntu based distribution, one can run the following commands:

sudo add-apt-repository ppa:pycsw/stable
sudo apt-get update
sudo apt-get install python-pycsw pycsw-cgi

An alternative method is to use the OSGeoLive installation script located in pycsw/etc/dist/osgeolive:

cd pycsw/etc/dist
sudo ./install_pycsw.sh

The script installs the dependencies (Apache, lxml, sqlalchemy, shapely, pyproj) and then pycsw to /var/www.

Running on Windows

For Windows installs, change the first line of csw.py to:

#!/Python27/python -u

Note

The use of -u is required to properly output gzip-compressed responses.

Security

By default, default.cfg is at the root of the pycsw install. If pycsw is setup outside an HTTP server’s cgi-bin area, this file could be read. The following options protect the configuration:

	move default.cfg to a non HTTP accessible area, and modify csw.py to point to the updated location

	configure web server to deny access to the configuration. For example, in Apache, add the following to httpd.conf:

<Files ~ "\.(cfg)$">
 order allow,deny
 deny from all
</Files>

Running on WSGI

pycsw supports the Web Server Gateway Interface [http://en.wikipedia.org/wiki/Web_Server_Gateway_Interface] (WSGI). To run pycsw in WSGI mode, use csw.wsgi in your WSGI server environment. Below is an example of configuring with Apache:

WSGIDaemonProcess host1 home=/var/www/pycsw processes=2
WSGIProcessGroup host1
WSGIScriptAlias /pycsw-wsgi /var/www/pycsw/csw.wsgi
<Directory /var/www/pycsw>
 Order deny,allow
 Allow from all
</Directory>

or use the WSGI reference implementation [http://docs.python.org/library/wsgiref.html]:

$ python ./csw.wsgi
Serving on port 8000...

which will publish pycsw to http://localhost:8000/

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Configuration

pycsw’s runtime configuration is defined by default.cfg. pycsw ships with a sample configuration (default-sample.cfg). Copy the file to default.cfg and edit the following:

[server]

	home: the full filesystem path to pycsw

	url: the URL of the resulting service

	mimetype: the MIME type when returning HTTP responses

	language: the ISO 639-1 language and ISO 3166-1 alpha2 country code of the service (e.g. en-CA, fr-CA, en-US)

	encoding: the content type encoding (e.g. ISO-8859-1)

	maxrecords: the maximum number of records to return by default

	loglevel: the logging level (see http://docs.python.org/library/logging.html#logging-levels)

	logfile: the full file path to the logfile

	ogc_schemas_base: base URL of OGC XML schemas tree file structure (default is http://schemas.opengis.net)

	federatedcatalogues: comma delimited list of CSW endpoints to be used for distributed searching, if requested by the client (see Distributed Searching)

	pretty_print: whether to pretty print the output (true or false). Default is false

	gzip_compresslevel: gzip compression level, lowest is 1, highest is 9. Default is off

	domainquerytype: for GetDomain operations, how to output domain values. Accepted values are list and range (min/max). Default is list

	domaincounts: for GetDomain operations, whether to provide frequency counts for values. Accepted values are true and False. Default is false

	profiles: comma delimited list of profiles to load at runtime (default is none). See Profile Plugins

	smtp_host: SMTP host for processing csw:ResponseHandler parameter via outgoing email requests (default is localhost)

	spatial_ranking: parameter that enables (true or false) ranking of spatial query results as per K.J. Lanfear 2006 - A Spatial Overlay Ranking Method for a Geospatial Search of Text Objects [http://pubs.usgs.gov/of/2006/1279/2006-1279.pdf].

[manager]

	transactions: whether to enable transactions (true or false). Default is false (see Transactions)

	allowed_ips: comma delimited list of IP addresses (e.g. 192.168.0.103), wildcards (e.g. 192.168.0.*) or CIDR notations (e.g. 192.168.100.0/24) allowed to perform transactions (see Transactions)

	csw_harvest_pagesize: when harvesting other CSW servers, the number of records per request to page by (default is 10)

[metadata:main]

	identification_title: the title of the service

	identification_abstract: some descriptive text about the service

	identification_keywords: comma delimited list of keywords about the service

	identification_keywords_type: keyword type as per the ISO 19115 MD_KeywordTypeCode codelist [http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_KeywordTypeCode]). Accepted values are discipline, temporal, place, theme, stratum

	identification_fees: fees associated with the service

	identification_accessconstraints: access constraints associated with the service

	provider_name: the name of the service provider

	provider_url: the URL of the service provider

	contact_name: the name of the provider contact

	contact_position: the position title of the provider contact

	contact_address: the address of the provider contact

	contact_city: the city of the provider contact

	contact_stateorprovince: the province or territory of the provider contact

	contact_postalcode: the postal code of the provider contact

	contact_country: the country of the provider contact

	contact_phone: the phone number of the provider contact

	contact_fax: the facsimile number of the provider contact

	contact_email: the email address of the provider contact

	contact_url: the URL to more information about the provider contact

	contact_hours: the hours of service to contact the provider

	contact_instructions: the how to contact the provider contact

	contact_role: the role of the provider contact as per the ISO 19115 CI_RoleCode codelist [http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_RoleCode]). Accepted values are author, processor, publisher, custodian, pointOfContact, distributor, user, resourceProvider, originator, owner, principalInvestigator

[repository]

	database: the full file path to the metadata database, in database URL format (see http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls)

	table: the table name for metadata records (default is records). If you are using PostgreSQL with a DB schema other than public, qualify the table like myschema.table

	mappings: custom repository mappings (see Mapping to an Existing Repository)

	source: the source of this repository only if not local (e.g. GeoNode Configuration, Open Data Catalog Configuration). Supported values are geonode, odc

	filter: server side database filter to apply as mask to all CSW requests (see Repository Filters)

Note

See Administration for connecting your metadata repository and supported information models.

Alternate Configurations

By default, pycsw loads default.cfg at runtime. To load an alternate configuration, modify csw.py to point to the desired configuration. Alternatively, pycsw supports explicitly specifiying a configuration by appending config=/path/to/default.cfg to the base URL of the service (e.g. http://localhost/pycsw/csw.py?config=tests/suites/default/default.cfg&service=CSW&version=2.0.2&request=GetCapabilities). When the config parameter is passed by a CSW client, pycsw will override the default configuration location and subsequent settings with those of the specified configuration.

This also provides the functionality to deploy numerous CSW servers with a single pycsw installation.

Hiding the Location

Some deployments with alternate configurations prefer not to advertise the base URL with the config= approach. In this case, there are many options to advertise the base URL.

Environment Variables

One option is using Apache’s Alias and SetEnvIf directives. For example, given the base URL http://localhost/pycsw/csw.py?config=foo.cfg, set the following in Apache’s httpd.conf:

Alias /pycsw/csw-foo.py /var/www/pycsw/csw.py
SetEnvIf Request_URI "/pycsw/csw-foo.py" PYCSW_CONFIG=/var/www/pycsw/csw-foo.cfg

Note

Apache must be restarted after changes to httpd.conf

pycsw will use the configuration as set in the PYCSW_CONFIG environment variable in the same manner as if it was specified in the base URL. Note that the configuration value server.url value must match the Request_URI value so as to advertise correctly in pycsw’s Capabilities XML.

Wrapper Script

Another option is to write a simple wrapper (e.g. csw-foo.sh), which provides the same functionality and can be deployed without restarting Apache:

#!/bin/sh

export PYCSW_CONFIG=/var/www/pycsw/csw-foo.cfg

/var/www/pycsw/csw.py

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Administration

pycsw administration is handled by the pycsw-admin.py utility. pycsw-admin.py
is installed as part of the pycsw install process and should be available in your
PATH.

Note

Run pycsw-admin.py -h to see all administration operations and parameters

Metadata Repository Setup

pycsw supports the following databases:

	SQLite3

	PostgreSQL

	PostgreSQL with PostGIS enabled

	MySQL

Note

The easiest and fastest way to deploy pycsw is to use SQLite3 as the backend.

Note

PostgreSQL support includes support for PostGIS functions if enabled

Note

If PostGIS (1.x or 2.x) is activated before setting up the pycsw/PostgreSQL database, then native PostGIS geometries will be enabled.

To expose your geospatial metadata via pycsw, perform the following actions:

	setup the database

	import metadata

	publish the repository

Supported Information Models

By default, pycsw supports the csw:Record information model.

Note

See Profile Plugins for information on enabling profiles

Setting up the Database

$ pycsw-admin.py -c setup_db -f default.cfg

This will create the necessary tables and values for the repository.

The database created is an OGC SFSQL [http://www.opengeospatial.org/standards/sfs] compliant database, and can be used with any implementing software. For example, to use with OGR [http://www.gdal.org/ogr]:

$ ogrinfo /path/to/records.db
INFO: Open of 'records.db'
using driver 'SQLite' successful.
1: records (Polygon)
$ ogrinfo -al /path/to/records.db
lots of output

Note

If PostGIS is detected, the pycsw-admin.py script does not create the SFSQL tables as they are already in the database.

Loading Records

$ pycsw-admin.py -c load_records -f default.cfg -p /path/to/records

This will import all *.xml records from /path/to/records into the database specified in default.cfg (repository.database). Passing -r to the script will process /path/to/records recursively.

Note

Records can also be imported using CSW-T (see Transactions).

Exporting the Repository

$ pycsw-admin.py -c export_records -f default.cfg -p /path/to/output_dir

This will write each record in the database specified in default.cfg (repository.database) to an XML document on disk, in directory /path/to/output_dir.

Optimizing the Database

$ pycsw-admin.py -c optimize_db -f default.cfg

Note

This feature is relevant only for PostgreSQL and MySQL

Database Specific Notes

PostgreSQL

	if PostGIS is not enabled, pycsw makes uses of PL/Python functions. To enable PostgreSQL support, the database user must be able to create functions within the database. In case of recent PostgreSQL versions (9.x), the PL/Python extension must be enabled prior to pycsw setup

	PostgreSQL Full Text Search [http://www.postgresql.org/docs/9.2/static/textsearch.html] is supported for csw:AnyText based queries. pycsw creates a tsvector column based on the text from anytext column. Then pycsw creates a GIN index against the anytext_tsvector column. This is created automatically in pycsw.admin.setup_db. Any query against csw:AnyText or apiso:AnyText will process using PostgreSQL FTS handling

PostGIS

	pycsw makes use of PostGIS spatial functions and native geometry data type.

	It is advised to install the PostGIS extension before setting up the pycsw database

	If PostGIS is detected, the pycsw-admin.py script will create both a native geometry column and a WKT column, as well as a trigger to keep both synchronized.

	In case PostGIS gets disabled, pycsw will continue to work with the WKT [http://en.wikipedia.org/wiki/Well-known_text] column

	In case of migration from plain PostgreSQL database to PostGIS, the spatial functions of PostGIS will be used automatically

	When migrating from plain PostgreSQL database to PostGIS, in order to enable native geometry support, a “GEOMETRY” column named “wkb_geometry” needs to be created manually (along with the update trigger in pycsw.admin.setup_db). Also the native geometries must be filled manually from the WKT [http://en.wikipedia.org/wiki/Well-known_text] field. Next versions of pycsw will automate this process

Mapping to an Existing Repository

pycsw supports publishing metadata from an existing repository. To enable this functionality, the default database mappings must be modified to represent the existing database columns mapping to the abstract core model (the default mappings are in pycsw/config.py:MD_CORE_MODEL).

To override the default settings:

	define a custom database mapping based on etc/mappings.py

	in default.cfg, set repository.mappings to the location of the mappings.py file:

[repository]
...
mappings=path/to/mappings.py

See the GeoNode Configuration and Open Data Catalog Configuration for further examples.

Existing Repository Requirements

pycsw requires certain repository attributes and semantics to exist in any repository to operate as follows:

	pycsw:Identifier: unique identifier

	pycsw:Typename: typename for the metadata; typically the value of the root element tag (e.g. csw:Record, gmd:MD_Metadata)

	pycsw:Schema: schema for the metadata; typically the target namespace (e.g. http://www.opengis.net/cat/csw/2.0.2, http://www.isotc211.org/2005/gmd)

	pycsw:InsertDate: date of insertion

	pycsw:XML: full XML representation

	pycsw:AnyText: bag of XML element text values, used for full text search. Realized with the following design pattern:
	capture all XML element and attribute values

	store in repository

	pycsw:BoundingBox: string of WKT [http://en.wikipedia.org/wiki/Well-known_text] or EWKT [http://en.wikipedia.org/wiki/Well-known_text#Variations] geometry

The following repository semantics exist if the attributes are specified:

	pycsw:Keywords: comma delimited list of keywords

	pycsw:Links: structure of links in the format “name,description,protocol,url[^,,,[^,,,]]”

Values of mappings can be derived from the following mechanisms:

	text fields

	Python datetime.datetime or datetime.date objects

	Python functions

Further information is provided in pycsw/config.py:MD_CORE_MODEL.

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Distributed Searching

Note

Your server must be able to make outgoing HTTP requests for this functionality.

pycsw has the ability to perform distributed searching against other CSW servers. Distributed searching is disabled by default; to enable, server.federatedcatalogues must be set. A CSW client must issue a GetRecords request with csw:DistributedSearch specified, along with an optional hopCount attribute (see subclause 10.8.4.13 of the CSW specification). When enabled, pycsw will search all specified catalogues and return a unified set of search results to the client. Due to the distributed nature of this functionality, requests will take extra time to process compared to queries against the local repository.

Scenario: Federated Search

pycsw deployment with 3 configurations (CSW-1, CSW-2, CSW-3), subsequently providing three (3) endpoints. Each endpoint is based on an opaque metadata repository (based on theme/place/discipline, etc.). Goal is to perform a single search against all endpoints.

pycsw realizes this functionality by supporting alternate configurations, and exposes the additional CSW endpoint(s) with the following design pattern:

CSW-1: http://localhost/pycsw/csw.py?config=CSW-1.cfg

CSW-2: http://localhost/pycsw/csw.py?config=CSW-2.cfg

CSW-3: http://localhost/pycsw/csw.py?config=CSW-3.cfg

...where the *.cfg configuration files are configured for each respective metadata repository. The above CSW endpoints can be interacted with as usual.

To federate the discovery of the three (3) portals into a unified search, pycsw realizes this functionality by deploying an additional configuration which acts as the superset of CSW-1, CSW-2, CSW-3:

CSW-all: http://localhost/pycsw/csw.py?config=CSW-all.cfg

This allows the client to invoke one (1) CSW GetRecords request, in which the CSW endpoint spawns the same GetRecords request to 1..n distributed CSW endpoints. Distributed CSW endpoints are advertised in CSW Capabilities XML via ows:Constraint:

<ows:OperationsMetadata>
...
 <ows:Constraint name="FederatedCatalogues">
 <ows:Value>http://localhost/pycsw/csw.py?config=CSW-1.cfg</ows:Value>
 <ows:Value>http://localhost/pycsw/csw.py?config=CSW-2.cfg</ows:Value>
 <ows:Value>http://localhost/pycsw/csw.py?config=CSW-3.cfg</ows:Value>
 </ows:Constraint>
...
</ows:OperationsMetadata>

...which advertises which CSW endpoint(s) the CSW server will spawn if a distributed search is requested by the client.

in the CSW-all configuration:

[server]
...
federatedcatalogues=http://localhost/pycsw/csw.py?config=CSW-1.cfg,http://localhost/pycsw/csw.py?config=CSW-2.cfg,http://localhost/pycsw/csw.py?config=CSW-3.cfg

At which point a CSW client request to CSW-all with distributedsearch=TRUE, while specifying an optional hopCount. Query network topology:

 AnyClient
 ^
 |
 v
 CSW-all
 ^
 |
 v
 /-------------\
 ^ ^ ^
 | | |
 v v v
CSW-1 CSW-2 CSW-3

As a result, a pycsw deployment in this scenario may be approached on a per ‘theme’ basis, or at an aggregate level.

All interaction in this scenario is local to the pycsw installation, so network performance would not be problematic.

A very important facet of distributed search is as per Annex B of OGC:CSW 2.0.2. Given that all the CSW endpoints are managed locally, duplicates and infinite looping are not deemed to present an issue.

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Search/Retrieval via URL (SRU) Support

pycsw supports the Search/Retrieval via URL [http://www.loc.gov/standards/sru/] search protocol implementation as per subclause 8.4 of the OpenGIS Catalogue Service Implementation Specification.

SRU support is enabled by default. HTTP GET requests must be specified with mode=sru for SRU requests, e.g.:

http://localhost/pycsw/csw.py?mode=sru&operation=searchRetrieve&query=foo

See http://www.loc.gov/standards/sru/simple.html for example SRU requests.

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

OpenSearch Support

pycsw supports the A9 OpenSearch [http://www.opensearch.org/Home] 1.1 implementation in support of aggregated searching.

Description Document

To generate an OpenSearch Description Document:

$ cd /path/to/pycsw
$ export PYTHONPATH=`pwd`
$ python-admin.py -c gen_opensearch_description -f default.cfg -o /path/to/opensearch.xml

This will create the document which can then be autodiscovered [http://www.opensearch.org/Specifications/OpenSearch/1.1#Autodiscovery].

OpenSearch support is enabled by default. HTTP requests must be specified with mode=opensearch in the base URL for OpenSearch requests, e.g.:

http://localhost/pycsw/csw.py?mode=opensearch&service=CSW&verison=2.0.2&request=GetRecords&elementsetname=brief&typenames=csw:Record&resulttype=results

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

SOAP

pycsw supports handling of SOAP encoded requests and responses as per subclause 10.3.2 of OGC:CSW 2.0.2. SOAP request examples can be found in tests/index.html.

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

XML Sitemaps

XML Sitemaps [http://www.sitemaps.org/] can be generated by running:

$ pycsw-admin.py -c gen_sitemap -f default.cfg -o sitemap.xml

The sitemap.xml file should be saved to an an area on your web server (parallel to or above your pycsw install location) to enable web crawlers to index your repository.

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Transactions

pycsw has the ability to process CSW Harvest and Transaction requests (CSW-T). Transactions are disabled by default; to enable, manager.transactions must be set to true. Access to transactional functionality is limited to IP addresses which must be set in manager.allowed_ips.

Supported Resource Types

For transactions and harvesting, pycsw supports the following metadata resource types by default:

	Resource Type
	Namespace
	Transaction
	Harvest

	Dublin Core
	http://www.opengis.net/cat/csw/2.0.2
	yes
	yes

	FGDC
	http://www.opengis.net/cat/csw/csdgm
	yes
	yes

	ISO 19139
	http://www.isotc211.org/2005/gmd
	yes
	yes

	ISO GMI
	http://www.isotc211.org/2005/gmi
	yes
	yes

	OGC:CSW 2.0.2
	http://www.opengis.net/cat/csw/2.0.2
	
	yes

	OGC:WMS 1.1.1
	http://www.opengis.net/wms
	
	yes

	OGC:WFS 1.1.0
	http://www.opengis.net/wfs
	
	yes

	OGC:WCS 1.0.0
	http://www.opengis.net/wcs
	
	yes

	OGC:WPS 1.0.0
	http://www.opengis.net/wps/1.0.0
	
	yes

	OGC:SOS 1.0.0
	http://www.opengis.net/sos/1.0
	
	yes

	OGC:SOS 2.0.0
	http://www.opengis.net/sos/2.0
	
	yes

	WAF [http://seabass.ieee.org/groups/geoss/index.php?option=com_sir_200&Itemid=157&ID=183]
	urn:geoss:urn
	
	yes

Additional metadata models are supported by enabling the appropriate Profile Plugins.

Note

For transactions to be functional when using SQLite3, the SQLite3 database file (and its parent directory) must be fully writable. For example:

$ mkdir /path/data
$ chmod 777 /path/data
$ chmod 666 test.db
$ mv test.db /path/data

For CSW-T deployments, it is strongly advised that this directory reside in an area that is not accessible by HTTP.

Harvesting

Note

Your server must be able to make outgoing HTTP requests for this functionality.

pycsw supports the CSW-T Harvest operation. Records which are harvested require to setup a cronjob to periodically refresh records in the local repository. A sample cronjob is available in etc/harvest-all.cron which points to pycsw-admin.py (you must specify the correct path to your configuration). Harvest operation results can be sent by email (via mailto:) or ftp (via ftp://) if the Harvest request specifies csw:ResponseHandler.

Note

For csw:ResponseHandler values using the mailto: protocol, you must have server.smtp_host set in your configuration.

OGC Web Services

When harvesting OGC web services, requests can provide the base URL of the service as part of the Harvest request. pycsw will construct a GetCapabilities request dynamically.

When harvesting other CSW servers, pycsw pages through the entire CSW in default increments of 10. This value can be modified via the manager.csw_harvest_pagesize configuration option. It is strongly advised to use the csw:ResponseHandler parameter for harvesting large CSW catalogues to prevent HTTP timeouts.

Transactions

pycsw supports 3 modes of the Transaction operation (Insert, Update, Delete):

	Insert: full XML documents can be inserted as per CSW-T

	Update: updates can be made as full record updates or record properties against a csw:Constraint

	Delete: deletes can be made against a csw:Constraint

Transaction operation results can be sent by email (via mailto:) or ftp (via ftp://) if the Transaction request specifies csw:ResponseHandler.

The Tester contain CSW-T request examples.

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Repository Filters

pycsw has the ability to perform server side repository / database filters as a means to mask all CSW requests to query against a specific subset of the metadata repository, thus providing the ability to deploy multiple pycsw instances pointing to the same database in different ways via the repository.filter configuration option.

Repository filters are a convenient way to subset your repository at the server level without the hassle of creating proper database views. For large repositories, it may be better to subset at the database level for performance.

Scenario: One Database, Many Views

Imagine a sample database table of records (subset below for brevity):

	identifier
	parentidentifier
	title
	abstract

	1
	33
	foo1
	bar1

	2
	33
	foo2
	bar2

	3
	55
	foo3
	bar3

	4
	55
	foo1
	bar1

	5
	21
	foo5
	bar5

	5
	21
	foo6
	bar6

A default pycsw instance (with no repository.filters option) will always process CSW requests against the entire table. So a CSW GetRecords filter like:

<ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>apiso:Title</ogc:PropertyName>
 <ogc:Literal>foo1</ogc:Literal>
 </ogc:PropertyIsEqualTo>
</ogc:Filter>

...will return:

	identifier
	parentidentifier
	title
	abstract

	1
	33
	foo1
	bar1

	4
	55
	foo1
	bar1

Suppose you wanted to deploy another pycsw instance which serves metadata from the same database, but only from a specific subset. Here we set the repository.filter option:

[repository]
database=sqlite:///records.db
filter=pycsw:ParentIdentifier = '33'

The same CSW GetRecords filter as per above then yields the following results:

	identifier
	parentidentifier
	title
	abstract

	1
	33
	foo1
	bar1

Another example:

[repository]
database=sqlite:///records.db
filter=pycsw:ParentIdentifier != '33'

The same CSW GetRecords filter as per above then yields the following results:

	identifier
	parentidentifier
	title
	abstract

	4
	55
	foo1
	bar1

The repository.filter option accepts all core queryables set in the pycsw core model (see pycsw.config.StaticContext.md_core_model for the complete list).

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Profile Plugins

Overview

pycsw allows for the implementation of profiles to the core standard. Profiles allow specification of additional metadata format types (i.e. ISO 19139:2007, NASA DIF, INSPIRE, etc.) to the repository, which can be queried and presented to the client. pycsw supports a plugin architecture which allows for runtime loading of Python code.

All profiles must be placed in the pycsw/plugins/profiles directory.

Requirements

pycsw/
 plugins/
 __init__.py # empty
 profiles/ # directory to store profiles
 __init__.py # empty
 profile.py # defines abstract profile object (properties and methods) and functions to load plugins
 apiso/ # profile directory
 __init__.py # empty
 apiso.py # profile code
 ... # supporting files, etc.

Abstract Base Class Definition

All profile code must be instantiated as a subclass of profile.Profile. Below is an example to add a Foo profile:

from pycsw.plugins.profiles import profile

class FooProfile(profile.Profile):
 profile.Profile.__init__(self,
 name='foo',
 version='1.0.3',
 title='My Foo Profile',
 url='http://example.org/fooprofile/docs',
 namespace='http://example.org/foons',
 typename='foo:RootElement',
 outputschema=http://example.org/foons',
 prefixes=['foo'],
 model=model,
 core_namespaces=namespaces,
 added_namespaces={'foo': 'http://example.org/foons'}
 repository=REPOSITORY['foo:RootElement'])

Your profile plugin class (FooProfile) must implement all methods as per profile.Profile. Profile methods must always return lxml.etree.Element types, or None.

Enabling Profiles

All profiles are disabled by default. To specify profiles at runtime, set the server.profiles value in the Configuration to the name of the package (in the pycsw/plugins/profiles directory). To enable multiple profiles, specify as a comma separated value (see Configuration).

Testing

Profiles must add examples to the Tester interface, which must provide example requests specific to the profile.

Supported Profiles

ISO Metadata Application Profile (1.0.0)

Overview

The ISO Metadata Application Profile (APISO) is a profile of CSW 2.0.2 which enables discovery of geospatial metadata following ISO 19139:2007 and ISO 19119:2005/PDAM 1.

Configuration

No extra configuration is required.

Querying

	typename: gmd:MD_Metadata

	outputschema: http://www.isotc211.org/2005/gmd

Enabling APISO Support

To enable APISO support, add apiso to server.profiles as specified in Configuration.

Testing

A testing interface is available in tests/index.html which contains tests specific to APISO to demonstrate functionality. See Tester for more information.

INSPIRE Extension

Overview

APISO includes an extension for enabling INSPIRE Discovery Services 3.0 [http://inspire.jrc.ec.europa.eu/documents/Network_Services/TechnicalGuidance_DiscoveryServices_v3.0.pdf] support. To enable the INSPIRE extension to APISO, create a [metadata:inspire] section in the main configuration with enabled set to true.

Configuration

[metadata:inspire]

	enabled: whether to enable the INSPIRE extension (true or false)

	languages_supported: supported languages (see http://inspire.ec.europa.eu/schemas/common/1.0/enums/enum_eng.xsd, simpleType euLanguageISO6392B)

	default_language: the default language (see http://inspire.ec.europa.eu/schemas/common/1.0/enums/enum_eng.xsd, simpleType euLanguageISO6392B)

	date: date of INSPIRE metadata offering (in ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] format)

	gemet_keywords: a comma-seperated keyword list of GEMET INSPIRE theme keywords [http://www.eionet.europa.eu/gemet/inspire_themes] about the service (see http://inspire.ec.europa.eu/schemas/common/1.0/enums/enum_eng.xsd, complexType inspireTheme_eng)

	conformity_service: the level of INSPIRE conformance for spatial data sets and services (conformant, notConformant, notEvaluated)

	contact_organization: the organization name responsible for the INSPIRE metadata

	contact_email: the email address of entity responsible for the INSPIRE metadata

	temp_extent: temporal extent of the service (in ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] format). Either a single date (i.e. yyyy-mm-dd), or an extent (i.e. yyyy-mm-dd/yyyy-mm-dd)

CSW-ebRIM Registry Service - Part 1: ebRIM profile of CSW

Overview

The CSW-ebRIM Registry Service is a profile of CSW 2.0.2 which enables discovery of geospatial metadata following the ebXML information model.

Configuration

No extra configuration is required.

Querying

	typename: rim:RegistryObject

	outputschema: urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0

Enabling ebRIM Support

To enable ebRIM support, add ebrim to server.profiles as specified in Configuration.

Testing

A testing interface is available in tests/index.html which contains tests specific to ebRIM to demonstrate functionality. See Tester for more information.

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Output Schema Plugins

Overview

pycsw allows for extending the implementation of output schemas to the core standard. outputschemas allow for a client to request metadata in a specific format (ISO, Dublin Core, FGDC, NASA DIF and Atom are default).

All outputschemas must be placed in the pycsw/plugins/outputschemas directory.

Requirements

pycsw/
 plugins/
 __init__.py # empty
 outputschemas/
 __init__.py # __all__ is a list of all provided outputschemas
 atom.py # default
 dif.py # default
 fgdc.py # default

Implementing a new outputschema

Create a file in pycsw/plugins/outputschemas, which defines the following:

	NAMESPACE: the default namespace of the outputschema which will be advertised

	NAMESPACE: dict of all applicable namespaces to outputschema

	XPATH_MAPPINGS: dict of pycsw core queryables mapped to the equivalent XPath of the outputschema

	write_record: function which returns a record as an lxml.etree.Element object

Add the name of the file to __init__.py:__all__. The new outputschema is now supported in pycsw.

Testing

New outputschemas must add examples to the Tester interface, which must provide example requests specific to the profile.

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

GeoNode Configuration

GeoNode (http://geonode.org/) is a platform for the management and publication of geospatial data. It brings together mature and stable open-source software projects under a consistent and easy-to-use interface allowing users, with little training, to quickly and easily share data and create interactive maps. GeoNode provides a cost-effective and scalable tool for developing information management systems. GeoNode uses CSW as a cataloguing mechanism to query and present geospatial metadata.

pycsw supports binding to an existing GeoNode repository for metadata query. The binding is read-only (transactions are not in scope, as GeoNode manages repository metadata changes in the application proper).

GeoNode Setup

pycsw is enabled and configured by default in GeoNode, so there are no additional steps required once GeoNode is setup. See the CATALOGUE and PYCSW settings.py entries [http://docs.geonode.org/en/latest/developers/reference/django-apps.html#id1] at http://docs.geonode.org/en/latest/developers/reference/django-apps.html#id1 for customizing pycsw within GeoNode.

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Open Data Catalog Configuration

Open Data Catalog (https://github.com/azavea/Open-Data-Catalog/) is an open data catalog based on Django, Python and PostgreSQL. It was originally developed for OpenDataPhilly.org, a portal that provides access to open data sets, applications, and APIs related to the Philadelphia region. The Open Data Catalog is a generalized version of the original source code with a simple skin. It is intended to display information and links to publicly available data in an easily searchable format. The code also includes options for data owners to submit data for consideration and for registered public users to nominate a type of data they would like to see openly available to the public.

pycsw supports binding to an existing Open Data Catalog repository for metadata query. The binding is read-only (transactions are not in scope, as Open Data Catalog manages repository metadata changes in the application proper).

Open Data Catalog Setup

Open Data Catalog provides CSW functionality using pycsw out of the box (installing ODC will also install pycsw). Settings are defined in https://github.com/azavea/Open-Data-Catalog/blob/master/OpenDataCatalog/settings.py#L165.

At this point, pycsw is able to read from the Open Data Catalog repository using the Django ORM.

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

CKAN Configuration

CKAN (http://ckan.org) is a powerful data management system that makes data accessible – by providing tools to streamline publishing, sharing, finding and using data. CKAN is aimed at data publishers (national and regional governments, companies and organizations) wanting to make their data open and available.

ckanext-spatial [https://github.com/okfn/ckanext-spatial] is CKAN’s geospatial extension. The extension adds a spatial field to the default CKAN dataset schema, using PostGIS as the backend. This allows to perform spatial queries and display the dataset extent on the frontend. It also provides harvesters to import geospatial metadata into CKAN from other sources, as well as commands to support the CSW standard. Finally, it also includes plugins to preview spatial formats such as GeoJSON.

CKAN Setup

Installation and configuration Instructions are provided as part of the ckanext-spatial documentation [http://docs.ckan.org/projects/ckanext-spatial/en/latest/csw.html].

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Testing

OGC CITE

Compliance benchmarking is done via the OGC Compliance & Interoperability Testing & Evaluation Initiative [http://cite.opengeospatial.org/]. The pycsw wiki [https://github.com/geopython/pycsw/wiki/OGC-CITE-Compliance] documents testing procedures and status.

Tester

The pycsw tests framework (in tests) is a collection of testsuites to perform automated regession testing of the codebase. Test are run against all pushes to the GitHub repository via Travis CI [http://travis-ci.org/geopython/pycsw].

Running Locally

The tests framework can be run from tests using Paver [http://paver.github.io/paver/] (see pavement.py) tasks for convenience:

$ cd /path/to/pycsw
run all tests (starts up http://localhost:8000)
$ paver test
run tests only against specific testsuites
$ paver test -s apiso,fgdc
run all tests, including harvesting (this is turned off by default given the volatility of remote services/data testing)
$ paver test -r

The tests perform HTTP GET and POST requests against http://localhost:8000. The expected output for each test can be found in expected. Results are categorized as passed, failed, or initialized. A summary of results is output at the end of the run.

Failed Tests

If a given test has failed, the output is saved in results. The resulting failure can be analyzed by running diff tests/expected/name_of_test.xml tests/results/name_of_test.xml to find variances. The Paver task returns a status code which indicates the number of tests which have failed (i.e. echo $?).

Test Suites

The tests framework is run against a series of ‘suites’ (in tests/suites), each of which specifies a given configuration to test various functionality of the codebase. Each suite is structured as follows:

	tests/suites/suite/default.cfg: the configuration for the suite

	tests/suites/suite/post: directory of XML documents for HTTP POST requests

	tests/suites/suite/get/requests.txt: directory and text file of KVP for HTTP GET requests

	tests/suites/suite/data: directory of sample XML data required for the test suite. Database and test data are setup/loaded automatically as part of testing

When the tests are invoked, the following operations are run:

	pycsw configuration is set to tests/suites/suite/default.cfg

	HTTP POST requests are run against tests/suites/suite/post/*.xml

	HTTP GET requests are run against each request in tests/suites/suite/get/requests.txt

The CSV format of tests/suites/suite/get/requests.txt is testname,request, with one line for each test. The testname value is a unique test name (this value sets the name of the output file in the test results). The request value is the HTTP GET request. The PYCSW_SERVER token is replaced at runtime with the URL to the pycsw install.

Adding New Tests

To add tests to an existing suite:

	for HTTP POST tests, add XML documents to tests/suites/suite/post

	for HTTP GET tests, add tests (one per line) to tests/suites/suite/get/requests.txt

	run paver test

To add a new test suite:

	create a new directory under tests/suites (e.g. foo)

	create a new configuration in tests/suites/foo/default.cfg
	Ensure that all file paths are relative to path/to/pycsw

	Ensure that repository.database points to an SQLite3 database called tests/suites/foo/data/records.db. The database must be called records.db and the directory tests/suites/foo/data must exist

	populate HTTP POST requests in tests/suites/foo/post

	populate HTTP GET requests in tests/suites/foo/get/requests.txt

	if the testsuite requires test data, create tests/suites/foo/data are store XML file there

	run paver test (or paver test -s foo to test only the new test suite)

The new test suite database will be created automatically and used as part of tests.

Web Testing

You can also use the pycsw tests via your web browser to perform sample requests against your pycsw install. The tests are is located in tests/. To generate the HTML page:

$ paver gen_tests_html

Then navigate to http://host/path/to/pycsw/tests/index.html.

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Cataloguing and Metadata Tools

CSW Clients

	Geoportal CSW Clients [http://sourceforge.net/apps/mediawiki/geoportal/index.php?title=Geoportal_CSW_Clients]

	OWSLib [http://geopython.github.io/OWSLib]

	qgcsw [http://geopython.github.io/qgcsw] (QGIS [http://qgis.org/] plugin)

CSW Servers

	deegree [http://deegree.org/]

	eXcat [http://gdsc.nlr.nl/gdsc/en/tools/excat]

	GeoNetwork opensource [http://geonetwork-opensource.org/]

Metadata Editing Tools

	CatMDEdit [http://catmdedit.sourceforge.net/]

	EUOSME [https://joinup.ec.europa.eu/software/euosme/description]

	GIMED [http://sourceforge.net/projects/gimed/]

	Metatools [http://hub.qgis.org/projects/metatools] (QGIS [http://qgis.org/] plugin)

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Support

Community

Please see the Community page for information on the pycsw community, getting support, and how to get involved.

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

Contributing to pycsw

The pycsw project openly welcomes contributions (bug reports, bug fixes, code
enhancements/features, etc.). This document will outline some guidelines on
contributing to pycsw. As well, pycsw community is a great place to
get an idea of how to connect and participate in pycsw community and development.

GitHub

Code, tests, documentation, wiki and issue tracking are all managed on GitHub.
Make sure you have a GitHub account [https://github.com/signup/free].

Code Overview

	the pycsw wiki [https://github.com/geopython/pycsw/wiki/Code-Architecture] documents an overview of the codebase

Documentation

	documentation is managed in docs/, in reStructuredText format

	Sphinx [http://sphinx-doc.org/] is used to generate the documentation

	See the reStructuredText Primer [http://sphinx-doc.org/rest.html] on rST markup and syntax.

Bugs

pycsw’s issue tracker [https://github.com/geopython/pycsw/issues] is the place to report bugs or request enhancements. To submit a bug be sure to specify the pycsw version you are using, the appropriate component, a description of how to reproduce the bug, as well as what version of Python and platform. For convenience, you can run pycsw-admin.py -c get_sysprof and copy/paste the output into your issue.

Forking pycsw

Contributions are most easily managed via GitHub pull requests. Fork [https://github.com/geopython/pycsw/fork]
pycsw into your own GitHub repository to be able to commit your work and submit pull requests.

Development

GitHub Commit Guidelines

	enhancements and bug fixes should be identified with a GitHub issue

	commits should be granular enough for other developers to understand the nature / implications of the change(s)

	for trivial commits that do not need Travis CI [https://travis-ci.org/geopython/pycsw] to run, include [ci skip] as part of the commit message

	non-trivial Git commits shall be associated with a GitHub issue. As documentation can always be improved, tickets need not be opened for improving the docs

	Git commits shall include a description of changes

	Git commits shall include the GitHub issue number (i.e. #1234) in the Git commit log message

	all enhancements or bug fixes must successfully pass all OGC CITE tests before they are committed

	all enhancements or bug fixes must successfully pass all Tester tests before they are committed

	enhancements which can be demonstrated from the pycsw Tester should be accompanied by example CSW request XML

Coding Guidelines

	pycsw instead of PyCSW, pyCSW, Pycsw

	always code with PEP 8 [http://www.python.org/dev/peps/pep-0008/] conventions

	always run source code through pep8 and pylint [http://www.logilab.org/857], using all pylint defaults except for C0111. sbin/pycsw-pylint.sh is included for convenience

	for exceptions which make their way to OGC ExceptionReport XML, always specify the appropriate locator and code parameters

	the pycsw wiki documents developer tasks [https://github.com/geopython/pycsw/wiki/Developer-Tasks] for things like releasing documentation, testing, etc.

Submitting a Pull Request

This section will guide you through steps of working on pycsw. This section assumes you have forked pycsw into your own GitHub repository.

setup a virtualenv
$ virtualenv mypycsw && cd mypycsw
$. ./bin/activate
clone the repository locally
$ git clone git@github.com:USERNAME/pycsw.git
$ cd pycsw
$ pip install -e . && pip install -r requirements-standalone.txt
add the main pycsw master branch to keep up to date with upstream changes
$ git remote add upstream https://github.com/geopython/pycsw.git
$ git pull upstream master
create a local branch off master
The name of the branch should include the issue number if it exists
$ git branch 72-foo
$ git checkout 72-foo
#
make code/doc changes
#
$ git commit -am 'fix xyz (#72-foo)'
$ git push origin 72-foo

Your changes are now visible on your pycsw repository on GitHub. You are now ready to create a pull request.
A member of the pycsw team will review the pull request and provide feedback / suggestions if required. If changes are
required, make them against the same branch and push as per above (all changes to the branch in the pull request apply).

The pull request will then be merged by the pycsw team. You can then delete your local branch (on GitHub), and then update
your own repository to ensure your pycsw repository is up to date with pycsw master:

$ git checkout master
$ git pull upstream master

GitHub Commit Access

	proposals to provide developers with GitHub commit access shall be emailed to the pycsw-devel mailing list. Proposals shall be approved by the pycsw development team. Committers shall be added by the project admin

	removal of commit access shall be handled in the same manner

	each committer shall be listed in https://github.com/geopython/pycsw/blob/master/COMMITTERS.txt

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	pycsw 1.8.1 documentation

License

The MIT License (MIT)

Copyright (c) 2010-2013 Tom Kralidis

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 Navigation

 	
 previous

 	pycsw 1.8.1 documentation

Committers

	Login(s)
	Name
	Email / Contact
	Area(s)

	tomkralidis
	Tom Kralidis
	tomkralidis at gmail.com
	Overall

	kalxas
	Angelos Tzotsos
	tzotsos at gmail.com
	INSPIRE, APISO profiles, Packaging

	adamhinz
	Adam Hinz
	hinz dot adam at gmail.com
	WSGI/Server Deployment

 Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

 _static/down.png

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/minus.png

_static/comment-bright.png

_static/comment-close.png

search.html

 Navigation

 		pycsw 1.8.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2013, Tom Kralidis.
 Last updated on 2014-05-21T19:40:53Z.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

