pycsw Documentation
Release 2.4.2

Tom Kralidis

2020-01-17

Contents

Introduction 3
Features 5
2.1 Standards Support e e e e 6
2.2 Supported Operations v v i e 6
2.3 Supported Output Formats o e e e e e 6
2.4 Supported Output Schemas L e 7
2.5 Supported Sorting Functionality L. e 7
2.6 Supported Filters oL e 7
Installation 9
3.1 System Requirements e e e 9
3.2 Imstalling from Source e 9
3.3 Installing from the Python Package Index (PyPi) 10
3.4 Installing from OpenSUSE Build Service e 11
3.5 Installingon Ubuntu/Mint L e 11
3.6 Runningon Windows e 11
37 SeCUrity . . . o o i e e e 12
3.8 Runningon WSGI e e e e 12
Docker 13
4.1 Inspectlogs o o e e e e 13
4.2 Using pycsw-admin v v vt e 14
4.3 Running custom pycsW CONLAINETS v ¢ v v v v v v vt e e e e e e e e e e e e e e e e 14
4.4 Setting up a development environment withdocker oL 0oL 15
Configuration 17
5.1 MaxRecords Handling e e e e e 19
5.2 Alternate Configurations L e e 19
Administration 21
6.1 Metadata Repository Setup e e 21
6.2 Supported Information Models L 22
6.3 Settingupthe Database 22
6.4 LoadingRecords e e 22
6.5 Exporting the Repository o e e e e e 22
6.6 Optimizing the Database e e e e e e 23

10

11

12

13

14

15

16

17

18

19

20

21

6.7 Deleting Records from the Repository L

6.8 Database Specific NOtes o o i i e e e e e e e e e
6.9 Mapping to an Existing Repository L e e e
CSW Support

Tl VRISIONS .« . v oo o e e e e e e e e e e e e
7.2 Request Examples e e e e e e e

Distributed Searching
8.1 Scenario: Federated Search e e

Search/Retrieval via URL (SRU) Support
OpenSearch Support

OAI-PMH Support

JSON Support

SOAP

XML Sitemaps

Transactions

15.1 Supported Resource Types o v v i i e e e e e e e e e e e e
15.2 Harvesting v i i e e e e e e e e e e e e e e
15.3 Transactions v i v i e

Repository Filters
16.1 Scenario: One Database, Many Views i

Profile Plugins

I7.1 OVEIVIEW o ot ot e e e e e e e e e e e e e e
17.2 Requirements o v v i i e
17.3 Abstract Base Class Definition e e e
17.4 Enabling Profiles e
17.5 TeStNG . . ¢ v v v vt e e e e e e e e e e e e e e

Supported Profiles

18.1 ISO Metadata Application Profile (1.0.0)
18.2 INSPIRE EXtension o i ittt ettt e e e e e
18.3 CSW-ebRIM Registry Service - Part 1: ebRIM profileof CSW

Repository Plugins

19.1 OVeIVIEW . . . o ot ot e e e e e e e e e e e
19.2 Requirements v v v v e it e
19.3 Configuration L i e e e e e e e e e e e e e

Output Schema Plugins

20.1 OVerVIEW L e
20.2 Requirements e e e e e
20.3 Implementing a new outputschema
204 TeStING o e e e e e e e e

GeoNode Configuration
21,1 GeoNode Setup v o v i e e e e e e e e e e e

31

33

35

37

39

41

43
43
44
44

45
45

47
47
47
47
48
48

49
49
50
50

53
53
53
53

55
55
55
55
56

57

22

23

24

25

26

27

28

29

30

31

32

HHypermap Configuration
22.1 HHypermap Setup

Open Data Catalog Configuration
23.1 Open Data Catalog Setup .

CKAN Configuration
24.1 CKANSetup

API
25.1 Simple Flask Example . . .

Testing

26.1 OGCCITE
26.2 Functional test suites
26.3 Unittests
26.4 Runningtests

pycsw Migration Guide
27.1 pycsw 1.x to 2.0 Migration .

Cataloguing and Metadata Tools
28.1 CSWClients
28.2 CSW Servers
28.3 Metadata Editing Tools . . .

Support
29.1 Community

Contributing to pycsw

30.1 Code of Conduct
30.2 Contributions and Licensing
303 GitHub
30.4 Code Overview
30.5 Documentation
306 Bugs
30.7 Forking pycsw
30.8 Development

License
31.1 Documentation

Committers

59
59

61
61

63
63

65
65

67
67
67
69
69

73
73

75
75
75
75

77
77

79
79
79
80
80
80
80
80
81

83
83

85

pycsw Documentation, Release 2.4.2

Author Tom Kralidis

Contact tomkralidis at gmail.com
Release 2.4.2

Date 2020-01-17

Contents 1

pycsw Documentation, Release 2.4.2

2 Contents

CHAPTER 1

Introduction

pycsw is an OGC CSW server implementation written in Python.

pycsw Documentation, Release 2.4.2

4 Chapter 1. Introduction

CHAPTER 2

Features

certified OGC Compliant and OGC Reference Implementation for both CSW 2.0.2 and CSW 3.0.0
harvesting support for WMS, WES, WCS, WPS, WAF, CSW, SOS
implements INSPIRE Discovery Services 3.0

implements ISO Metadata Application Profile 1.0.0

implements FGDC CSDGM Application Profile for CSW 2.0
implements the Search/Retrieval via URL (SRU) search protocol
implements Full Text Search capabilities

implements OGC OpenSearch Geo and Time Extensions

implements Open Archives Initiative Protocol for Metadata Harvesting
supports ISO, Dublin Core, DIF, FGDC, Atom and GM03 metadata models
CGI or WSGI deployment

Python 2 and 3 compatible

simple configuration

transactional capabilities (CSW-T)

flexible repository configuration

GeoNode connectivity

HHypermap connectivity

Open Data Catalog connectivity

CKAN connectivity

federated catalogue distributed searching

realtime XML Schema validation

extensible profile plugin architecture

http://www.opengeospatial.org/resource/products/details/?pid=1374
http://inspire.jrc.ec.europa.eu/documents/Network_Services/TechnicalGuidance_DiscoveryServices_v3.0.pdf
http://portal.opengeospatial.org/files/?artifact_id=21460
http://portal.opengeospatial.org/files/?artifact_id=16936
http://www.loc.gov/standards/sru/
http://geonode.org/
https://github.com/cga-harvard/HHypermap
https://github.com/azavea/Open-Data-Catalog/
http://ckan.org/

pycsw Documentation, Release 2.4.2

2.1 Standards Support

Standard Version(s)
OGC CSW 2.0.2,3.0.0
OGC Filter 1.1.0,2.0.0
OGC OWS Common | 1.0.0,2.0.0
OGC GML 3.1.1

OGC SFSQL 1.2.1
Dublin Core 1.1

SOAP 1.2

ISO 19115 2003

ISO 19139 2007

ISO 19119 2005
NASA DIF 9.7

FGDC CSDGM 1998
GMO03 2.1

SRU 1.1

OGC OpenSearch 1.0
OAI-PMH 2.0

2.2 Supported Operations

Request Optionality | Supported | HTTP method binding(s)
GetCapabilities mandatory yes GET (KVP) / POST (XML) / SOAP
DescribeRecord mandatory yes GET (KVP) /POST (XML) / SOAP
GetRecords mandatory yes GET (KVP) / POST (XML) / SOAP
GetRecordByld optional yes GET (KVP) /POST (XML) / SOAP
GetRepositoryltem | optional yes GET (KVP)

GetDomain optional yes GET (KVP) /POST (XML) / SOAP
Harvest optional yes GET (KVP) / POST (XML) / SOAP
UnHarvest optional no

Transaction optional yes POST (XML) / SOAP

Note: Asynchronous processing supported for GetRecords and Harvest requests (via csw:ResponseHandler)

Note: Supported Harvest Resource Types are listed in Transactions

2.3 Supported Output Formats

e XML (default)

* JSON

Chapter 2. Features

http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/filter
http://www.opengeospatial.org/standards/common
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/sfs
http://www.dublincore.org/
http://www.w3.org/TR/soap/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=26020
http://www.iso.org/iso/catalogue_detail.htm?csnumber=32557
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39890
http://gcmd.gsfc.nasa.gov/add/difguide/index.html
http://www.fgdc.gov/metadata/csdgm
http://www.geocat.ch/internet/geocat/en/home/documentation/gm03.html
http://www.loc.gov/standards/sru/
http://www.opengeospatial.org/standards/opensearchgeo
http://www.openarchives.org/OAI/openarchivesprotocol.html

pycsw Documentation, Release 2.4.2

2.4 Supported Output Schemas

* Dublin Core
ISO 19139
FGDC CSDGM
NASA DIF

e Atom

* GMO3

2.5 Supported Sorting Functionality

* ogc:SortBy
* ascending or descending
* aspatial (queryable properties)

* spatial (geometric area)

2.6 Supported Filters

2.6.1 Full Text Search

e csw:AnyText

2.6.2 Geometry Operands

* gml:Point
* gml:LineString
* gml:Polygon

* gml:Envelope

Note: Coordinate transformations are supported

2.6.3 Spatial Operators

« BBOX
* Beyond
¢ Contains
* Crosses

* Disjoint

2.4. Supported Output Schemas 7

pycsw Documentation, Release 2.4.2

* DWithin

* Equals

* Intersects
* Overlaps
* Touches

* Within

2.6.4 Logical Operators

* Between

* EqualTo

e LessThanEqualTo

* GreaterThan

* Like

e LessThan

* GreaterThanEqualTo
* NotEqualTo

* NullCheck

2.6.5 Functions

* length
* lower
e ltrim
e rtrim
e trim

* upper

8 Chapter 2. Features

CHAPTER 3

Installation

3.1

System Requirements

pycsw is written in Python, and works with (tested) version 2.7, 3.4 and 3.5

pycsw requires the following Python supporting libraries:

Ixml for XML support

SQLAIchemy for database bindings

pyproj for coordinate transformations

Shapely for spatial query / geometry support

OWSLIib for CSW client and metadata parser

six for Python 2/3 compatibility

xmltodict for working with XML similar to working with JSON

geolinks for dealing with geospatial links

Note:

You can install these dependencies via easy_install or pip

Note:

For GeoNode or Open Data Catalog or HHypermap deployments, SQLAlchemy is not required

3.2

Installing from Source

Download the latest stable version or fetch from Git.

http://python.org
http://lxml.de/
http://www.sqlalchemy.org/
http://code.google.com/p/pyproj/
http://toblerity.github.io/shapely/
https://github.com/geopython/OWSLib
https://pypi.python.org/pypi/six/
https://github.com/martinblech/xmltodict
https://github.com/geopython/geolinks
http://packages.python.org/distribute/easy_install.html
http://www.pip-installer.org
https://pycsw.org/download

pycsw Documentation, Release 2.4.2

3.2.1 For Developers and the Truly Impatient

The 4 minute install:

$ virtualenv pycsw && cd pycsw && . bin/activate

$ git clone https://github.com/geopython/pycsw.git && cd pycsw

$ pip install -e . && pip install -r requirements-standalone.txt
$ cp default-sample.cfg default.cfg

$ vi default.cfg

adjust paths in

— server.home

— repository.database

set server.url to http://localhost:8000/

$ python pycsw/wsgi.py

$ curl http://localhost:8000/?service=CSW&version=2.0.2&request=GetCapabilities

3.2.2 The Quick and Dirty Way

$ git clone git://github.com/geopython/pycsw.git

Ensure that CGI is enabled for the install directory. For example, on Apache, if pycsw is installed in /srv/www/
htdocs/pycsw (where the URL will be http://host/pycsw/csw.py), add the following to httpd. conf:

<Location /pycsw/>

Options +FollowSymLinks +ExecCGI
Allow from all

AddHandler cgi-script .py
</Location>

Note: If pycsw is installed in cgi—-bin, this should work as expected. In this case, the fests application must be
moved to a different location to serve static HTML documents.

Make sure, you have all the dependencies from requirements.txt and requirements-standalone.
txt

3.2.3 The Clean and Proper Way

$ git clone git://github.com/geopython/pycsw.git
$ python setup.py build
$ python setup.py install

At this point, pycsw is installed as a library and requires a CGI csw.py or WSGI pycsw/wsgi.py script to be
served into your web server environment (see below for WSGI configuration/deployment).

3.3 Installing from the Python Package Index (PyPi)

easy_install or pip will do the trick
easy_install pycsw
or

W o e

pip install pycsw

10 Chapter 3. Installation

pycsw Documentation, Release 2.4.2

3.4 Installing from OpenSUSE Build Service

In order to install the pycsw package in openSUSE Leap (stable distribution), one can run the following commands as
user root:

zypper —-ar http://download.opensuse.org/repositories/Application:/Geo/openSUSE_Leap.
—42.1/ GEO

zypper refresh

zypper install python-pycsw pycsw—cgi

In order to install the pycsw package in openSUSE Tumbleweed (rolling distribution), one can run the following
commands as user root:

zypper —ar http://download.opensuse.org/repositories/Application:/Geo/openSUSE_
—Tumbleweed/ GEO

zypper refresh

zypper install python-pycsw pycsw—cgi

An alternative method is to use the One-Click Installer.

3.5 Installing on Ubuntu/Mint

In order to install the most recent pycsw release to an Ubuntu-based distribution, one can use the UbuntuGIS Unstable
repository by running the following commands:

sudo add-apt-repository ppa:ubuntugis/ubuntugis-unstable
sudo apt-get update

sudo apt-get install python-pycsw pycsw-cgil

Alternatively, one can use the UbuntuGIS Stable repository which includes older but very well tested versions:

sudo add-apt-repository ppa:ubuntugis/ppa # sudo apt-get update # sudo apt-get install python-pycsw
pycsw-cgi

Note: Since Ubuntu 16.04 LTS Xenial release, pycsw is included by default in the official Multiverse repository.

3.6 Running on Windows

For Windows installs, change the first line of csw. py to:

’#//Python27/python -u

Note: The use of —u is required to properly output gzip-compressed responses.

Tip: MS4W (MapServer for Windows) as of its version 4.0 release includes pycsw, Apache’s mod_wsgi, Python
3.7, and many other tools, all ready to use out of the box. After installing, you will find your local pycsw catalogue

endpoint, and steps for further configuration, on your browser’s localhost page. You can read more about pycsw inside
MS4W here.

3.4. Installing from OpenSUSE Build Service 11

https://software.opensuse.org/package/python-pycsw
https://ms4w.com
https://ms4w.com/README_INSTALL.html#pycsw

pycsw Documentation, Release 2.4.2

3.7 Security

By default, default.cfgis at the root of the pycsw install. If pycsw is setup outside an HTTP server’s cgi-bin
area, this file could be read. The following options protect the configuration:

* move default.cfg toanon HTTP accessible area, and modify csw. py to point to the updated location

 configure web server to deny access to the configuration. For example, in Apache, add the following to ht tpd.
conf:

<Files ~ "\. (cfg)$">
order allow,deny
deny from all
</Files>

3.8 Running on WSGI

pycsw supports the Web Server Gateway Interface (WSGI). To run pycsw in WSGI mode, use pycsw/wsgi.py in
your WSGI server environment.

Note: mod_wsgi supports only the version of python it was compiled with. If the target server already sup-
ports WSGI applications, pycsw will need to use the same python version. WSGIDaemonProcess provides a
python-path directive that may allow a virtualenv created from the python version mod_wsgi uses.

Below is an example of configuring with Apache:

WSGIDaemonProcess hostl home=/var/www/pycsw processes=2
WSGIProcessGroup hostl
WSGIScriptAlias /pycsw-wsgi /var/www/pycsw/wsgi.py
<Directory /var/www/pycsw>

Order deny,allow

Allow from all
</Directory>

or use the WSGI reference implementation:

$ python ./pycsw/wsgi.py
Serving on port 8000...

which will publish pycsw to http://localhost:8000/

12 Chapter 3. Installation

http://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
https://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGIDaemonProcess
http://docs.python.org/library/wsgiref.html

CHAPTER 4

Docker

pycsw is available as a Docker image. The image is hosted on the Docker Hub.

Assuming you already have docker installed, you can get a pycsw instance up and running by issuing the following
command:

docker run -p 8000:8000 geopython/pycsw

Docker will retrieve the pycsw image from Docker Hub (if needed) and then start a new container listening on port
8000.

The default configuration will run pycsw with an sqlite repository backend loaded with some test data from the CITE
test suite. You can use this to take pycsw for a test drive.

4.1 Inspect logs

The default configuration for the docker image outputs logs to stdout. This is common practice with docker containers
and enables the inspection of logs with the docker logs command:

run a pycsw container in the background
docker run \

--name pycsw-test \

——publish 8000:8000 \

-—detach \

geopython/pycsw

inspect logs
docker logs pycsw-test

Note: In order to have pycsw logs being sent to standard output you must set server.logfile= in the pycsw
configuration file.

13

https://hub.docker.com/r/geopython/pycsw/

pycsw Documentation, Release 2.4.2

4.2 Using pycsw-admin

pycsw-admin can be executed on a running container by using docker exec:

’docker exec —-ti <running-container-id> pycsw-admin.py -h

4.3 Running custom pycsw containers

4.3.1 pycsw configuration

It is possible to supply a custom configuration file for pycsw as a bind mount or as a docker secret (in the case of
docker swarm). The configuration file is searched at the value of the PYCSW_CONF IG environmental variable, which
defaults to /etc/pycsw/pycsw.cfq.

Supplying the configuration file via bind mount:

docker run \
-—name pycsw \
-—detach \
-—volume <path-to-local-pycsw.cfg>:/etc/pycsw/pycsw.cfg \
——publish 8000:8000 \
geopython/pycsw

Supplying the configuration file via docker secrets:

first create a docker secret with the pycsw config file
docker secret create pycsw-config <path-to-local-pycsw.cfg>
docker service create \

-—name pycsw \

-—-secret src=pycsw-config,target=/etc/pycsw/pycsw.cfg \

—-publish 8000:8000

geopython/pycsw

4.3.2 sqlite repositories

The default database repository is the CITE database that is used for running pycsw’s test suites. Docker volumes may
be used to specify a custom sqlite database path. It should be mounted under /var/lib/pycsw:

first create a docker volume for persisting the database when
destroying containers
docker volume create pycsw-db-data
docker run \
--volume db-data:/var/lib/pycsw \
-—-detach \
——publish 8000:8000
geopython/pycsw

4.3.3 PostgreSQL repositories

Specifying a PostgreSQL repository is just a matter of configuring a custom pycsw.cfg file with the correct specifica-
tion.

14 Chapter 4. Docker

pycsw Documentation, Release 2.4.2

Check pycsw’s github repository for an example of a docker-compose/stack file that spins up a postgis database
together with a pycsw instance.

4.4 Setting up a development environment with docker

Working on pycsw’s code using docker enables an isolated environment that helps ensuring reproducibility while at
the same time keeping your base system free from pycsw related dependencies. This can be achieved by:

* Cloning pycsw’s repository locally;

* Starting up a docker container with appropriately set up bind mounts. In addition, the pycsw docker image sup-
ports a reload flag that turns on automatic reloading of the gunicorn web server whenever the code changes;

* Installing the development dependencies by using docker exec with the root user;

The following instructions set up a fully working development environment:

clone pycsw's repo
git clone https://github.com/geopython/pycsw.git

start a container for development

cd pycsw

docker run \
——name pycsw-dev \
——detach \
—--volume ${PWD}/pycsw:/usr/lib/python3.5/site-packages/pycsw \
—-volume ${PWD}/docs:/home/pycsw/docs \
—-volume ${PWD}/VERSION.txt:/home/pycsw/VERSION.txt \
—-volume S${PWD}/LICENSE.txt:/home/pycsw/LICENSE.txt \
——volume ${PWD}/COMMITTERS.txt:/home/pycsw/COMMITTERS.txt \
—-volume ${PWD}/CONTRIBUTING.rst:/home/pycsw/CONTRIBUTING.rst \
—-—volume ${PWD}/pycsw/plugins:/home/pycsw/pycsw/plugins \
—-publish 8000:8000 \
geopython/pycsw —--reload

install additional dependencies used in tests and docs
docker exec \

-ti \

—-—user root \

pycsw—dev pip3 install -r requirements-dev.txt

run tests (for example unit tests)
docker exec -ti pycsw-dev py.test -m unit

build docs
docker exec -ti pycsw-dev sh -c "cd docs && make html"

Note: Please note that the pycsw image only uses python 3.5 and that it also does not install pycsw in editable mode.
As such it is not possible to use tox.

Since the docs directory is bind mounted from your host machine into the container, after building the docs you may
inspect their content visually, for example by running:

firefox docs/_build/html/index.html

4.4. Setting up a development environment with docker 15

https://github.com/geopython/pycsw/tree/master/docker

pycsw Documentation, Release 2.4.2

16 Chapter 4. Docker

CHAPTER B

Configuration

pycsw’s runtime configuration is defined by default.cfg. pycsw ships with a sample configuration
(default-sample.cfg). Copy the file to default . cfg and edit the following:

[server]

home: the full filesystem path to pycsw
url: the URL of the resulting service
mimetype: the MIME type when returning HTTP responses

language: the ISO 639-1 language and ISO 3166-1 alpha2 country code of the service (e.g. en—CA, fr—CA,
en-US)

encoding: the content type encoding (e.g. ISO-8859-1, see https://docs.python.org/2/library/codecs.html#
standard-encodings). Default value is ‘UTF-8’

maxrecords: the maximum number of records to return by default. This value is enforced if a CSW’s client’s
maxRecords parameter is greater than server.maxrecords to limit capacity. See MaxRecords Handling
for more information

loglevel: the logging level (see http://docs.python.org/library/logging.html#logging-levels)
logfile: the full file path to the logfile
ogc_schemas_base: base URL of OGC XML schemas tree file structure (default is http://schemas.opengis.net)

federatedcatalogues: comma delimited list of CSW endpoints to be used for distributed searching, if requested
by the client (see Distributed Searching)

pretty_print: whether to pretty print the output (t rue or false). Defaultis false
gzip_compresslevel: gzip compression level, lowest is 1, highest is 9. Default is off

domainquerytype: for GetDomain operations, how to output domain values. Accepted values are 1ist and
range (min/max). Defaultis 1ist

domaincounts: for GetDomain operations, whether to provide frequency counts for values. Accepted values
are true and False. Defaultis false

17

https://docs.python.org/2/library/codecs.html#standard-encodings
https://docs.python.org/2/library/codecs.html#standard-encodings
http://docs.python.org/library/logging.html#logging-levels
http://schemas.opengis.net

pycsw Documentation, Release 2.4.2

* profiles: comma delimited list of profiles to load at runtime (default is none). See Profile Plugins

* smtp_host: SMTP host for processing csw: ResponseHandler parameter via outgoing email requests (de-
faultis localhost)

* spatial_ranking: parameter that enables (t rue or false) ranking of spatial query results as per K.J. Lanfear
2006 - A Spatial Overlay Ranking Method for a Geospatial Search of Text Objects.

[manager]
 transactions: whether to enable transactions (t rue or false). Default is false (see Transactions)

« allowed_ips: comma delimited list of IP addresses (e.g. 192.168.0.103), wildcards (e.g. 192.168.0.*) or CIDR
notations (e.g. 192.168.100.0/24) allowed to perform transactions (see Transactions)

* csw_harvest_pagesize: when harvesting other CSW servers, the number of records per request to page by
(default is 10)

[metadata:main]
¢ identification_title: the title of the service
* identification_abstract: some descriptive text about the service
* identification_keywords: comma delimited list of keywords about the service

¢ identification_keywords_type: keyword type as per the ISO 19115 MD_KeywordTypeCode codelist). Ac-
cepted values are discipline, temporal, place, theme, stratum

* identification_fees: fees associated with the service

« identification_accessconstraints: access constraints associated with the service
 provider_name: the name of the service provider

e provider_url: the URL of the service provider

* contact_name: the name of the provider contact

 contact_position: the position title of the provider contact

* contact_address: the address of the provider contact

 contact_city: the city of the provider contact

* contact_stateorprovince: the province or territory of the provider contact
* contact_postalcode: the postal code of the provider contact

e contact_country: the country of the provider contact

* contact_phone: the phone number of the provider contact

 contact_fax: the facsimile number of the provider contact

* contact_email: the email address of the provider contact

 contact_url: the URL to more information about the provider contact

» contact_hours: the hours of service to contact the provider
 contact_instructions: the how to contact the provider contact

* contact_role: the role of the provider contact as per the ISO 19115 CI_RoleCode codelist). Accepted val-
ues are author, processor, publisher, custodian, pointOfContact, distributor, user,
resourceProvider, originator, owner, principalInvestigator

[repository]

18 Chapter 5. Configuration

http://pubs.usgs.gov/of/2006/1279/2006-1279.pdf
http://pubs.usgs.gov/of/2006/1279/2006-1279.pdf
http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_KeywordTypeCode
http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_RoleCode

pycsw Documentation, Release 2.4.2

* database: the full file path to the metadata database, in database URL format (see http://docs.sqlalchemy.org/
en/latest/core/engines.html#database-urls)

* table: the table name for metadata records (default is records). If you are using PostgreSQL with a DB
schema other than pub1lic, qualify the table like myschema.table

* mappings: custom repository mappings (see Mapping to an Existing Repository)

* source: the source of this repository only if not local (e.g. GeoNode Configuration, Open Data Catalog Config-
uration). Supported values are geonode, odc

« filter: server side database filter to apply as mask to all CSW requests (see Repository Filters)

Note: See Administration for connecting your metadata repository and supported information models.

5.1 MaxRecords Handling

The The following describes how maxRecords is handled by the configuration when handling GetRecords re-
quests:

server.maxrecords | GetRecords.maxRecords | Result

none set none passed 10 (CSW default)
20 14 20

20 none passed 20

none set 100 100

20 200 20

5.2 Alternate Configurations

By default, pycsw loads default.cfg at runtime. To load an alternate configuration, modify csw.py
to point to the desired configuration. Alternatively, pycsw supports explicitly specifiying a configuration by
appending config=/path/to/default.cfg to the base URL of the service (e.g. http://localhost/
pycsw/csw.py?config=tests/suites/default/default.cfg&service=CSW&version=2.0.
2&request=GetCapabilities). When the config parameter is passed by a CSW client, pycsw will override
the default configuration location and subsequent settings with those of the specified configuration.

This also provides the functionality to deploy numerous CSW servers with a single pycsw installation.

5.2.1 Hiding the Location

Some deployments with alternate configurations prefer not to advertise the base URL with the config= approach.
In this case, there are many options to advertise the base URL.

Environment Variables

One option is using Apache’s Alias and SetEnvIf directives. For example, given the base URL http://
localhost/pycsw/csw.py?config=foo.cfg, set the following in Apache’s httpd.conf:

5.1. MaxRecords Handling 19

http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls
http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls

pycsw Documentation, Release 2.4.2

Alias /pycsw/csw—foo.py /var/www/pycsw/CSw.py
SetEnvIf Request_URI "/pycsw/csw—foo.py" PYCSW_CONFIG=/var/www/pycsw/csw—foo.cfg

Note: Apache must be restarted after changes to httpd.conf

pycsw will use the configuration as set in the PYCSW_CONF IG environment variable in the same manner as if it was
specified in the base URL. Note that the configuration value server.url value must match the Request_URI
value so as to advertise correctly in pycsw’s Capabilities XML.

Wrapper Script

Another option is to write a simple wrapper (e.g2. csw—foo. sh), which provides the same functionality and can be
deployed without restarting Apache:

#!/bin/sh
export PYCSW_CONFIG=/var/www/pycsw/csw-foo.cfg

/var/www/pycsw/csw.py

20 Chapter 5. Configuration

CHAPTER O

Administration

pycsw administration is handled by the pycsw—admin.py utility. pycsw—admin.py is installed as part of the
pycsw install process and should be available in your PATH.

Note: Run pycsw—admin.py -—h to see all administration operations and parameters

6.1 Metadata Repository Setup

pycsw supports the following databases:
* SQLite3
* PostgreSQL
* PostgreSQL with PostGIS enabled
* MySQL

Note: The easiest and fastest way to deploy pycsw is to use SQLite3 as the backend.

Note: PostgreSQL support includes support for PostGIS functions if enabled

Note: If PostGIS (1.x or 2.x) is activated before setting up the pycsw/PostgreSQL database, then native PostGIS
geometries will be enabled.

To expose your geospatial metadata via pycsw, perform the following actions:

* setup the database

21

pycsw Documentation, Release 2.4.2

* import metadata

* publish the repository

6.2 Supported Information Models

By default, pycsw supports the csw: Record information model.

Note: See Profile Plugins for information on enabling profiles

6.3 Setting up the Database

’$ pycsw—admin.py -c setup_db -f default.cfg

This will create the necessary tables and values for the repository.

The database created is an OGC SFSQL compliant database, and can be used with any implementing software. For
example, to use with OGR:

$ ogrinfo /path/to/records.db
INFO: Open of 'records.db'

using driver 'SQLite' successful.
1: records (Polygon)

$ ogrinfo —-al /path/to/records.db
lots of output

Note: If PostGIS is detected, the pycsw-admin.py script does not create the SFSQL tables as they are already in the
database.

6.4 Loading Records

’$ pycsw—admin.py —-c load_records -f default.cfg -p /path/to/records

This will import all ».xml records from /path/to/records into the database specified in default.cfg
(repository.database). Passing —r to the script will process /path/to/records recursively. Passing
-y to the script will force overwrite existing metadata with the same identifier. Note that —p accepts either a directory
path or single file.

Note: Records can also be imported using CSW-T (see Transactions).

6.5 Exporting the Repository

22 Chapter 6. Administration

http://www.opengeospatial.org/standards/sfs
http://www.gdal.org/ogr

pycsw Documentation, Release 2.4.2

$ pycsw-admin.py -c export_records —-f default.cfg -p /path/to/output_dir

This will write each record in the database specified in default.cfg (repository.database) to an XML
document on disk, in directory /path/to/output_dir.

6.6 Optimizing the Database

’$ pycsw—admin.py -c optimize_db -f default.cfg

Note: This feature is relevant only for PostgreSQL and MySQL

6.7 Deleting Records from the Repository

’$ pycsw—admin.py -c delete_records —-f default.cfg

This will empty the repository of all records.

6.8 Database Specific Notes

6.8.1 PostgreSQL

if PostGIS is not enabled, pycsw makes uses of PL/Python functions. To enable PostgreSQL support, the
database user must be able to create functions within the database. In case of recent PostgreSQL versions (9.x),
the PL/Python extension must be enabled prior to pycsw setup

PostgreSQL Full Text Search is supported for csw: AnyText based queries. pycsw creates a tsvector column
based on the text from anytext column. Then pycsw creates a GIN index against the anytext_tsvector column.
This is created automatically in pycsw.admin. setup_db. Any query against csw:AnyText or apiso:AnyText
will process using PostgreSQL FTS handling

6.8.2 PostGIS

pycsw makes use of PostGIS spatial functions and native geometry data type.
It is advised to install the PostGIS extension before setting up the pycsw database

If PostGIS is detected, the pycsw-admin.py script will create both a native geometry column and a WKT column,
as well as a trigger to keep both synchronized.

In case PostGIS gets disabled, pycsw will continue to work with the WKT column

In case of migration from plain PostgreSQL database to PostGIS, the spatial functions of PostGIS will be used
automatically

When migrating from plain PostgreSQL database to PostGIS, in order to enable native geometry support, a
“GEOMETRY” column named “wkb_geometry” needs to be created manually (along with the update trigger in
pycsw.admin.setup_db). Also the native geometries must be filled manually from the WKT field. Next
versions of pycsw will automate this process

6.6.

Optimizing the Database 23

http://www.postgresql.org/docs/9.2/static/textsearch.html
http://en.wikipedia.org/wiki/Well-known_text
http://en.wikipedia.org/wiki/Well-known_text

pycsw Documentation, Release 2.4.2

6.9 Mapping to an Existing Repository

pycsw supports publishing metadata from an existing repository. To enable this functionality, the default database
mappings must be modified to represent the existing database columns mapping to the abstract core model (the default
mappings are in pycsw/config.py:MD_CORE_MODEL).

To override the default settings:
* define a custom database mapping based on et c/mappings.py

e indefault.cfg,set repository.mappings to the location of the mappings.py file:

[repository]

mappings=path/to/mappings.py

Note you can also reference mappings as a Python object as a dotted path:

[repository]

mappings='path.to.pycsw_mappings'

See the GeoNode Configuration, HHypermap Configuration, and Open Data Catalog Configuration for further exam-
ples.

6.9.1 Existing Repository Requirements

pycsw requires certain repository attributes and semantics to exist in any repository to operate as follows:
e pycsw:Identifier: unique identifier

* pycsw:Typename: typename for the metadata; typically the value of the root element tag (e.g.
csw:Record, gmd:MD_Metadata)

* pycsw:Schema: schema for the metadata; typically the target namespace (e.g. http://www.opengis.
net/cat/csw/2.0.2,http://www.isotc211l.0rg/2005/gmd)

e pycsw:InsertDate: date of insertion
e pycsw:XML: full XML representation

e pycsw:AnyText: bag of XML element text values, used for full text search. Realized with the following
design pattern:

— capture all XML element and attribute values
— store in repository
* pycsw:BoundingBox: string of WKT or EWKT geometry
The following repository semantics exist if the attributes are specified:
* pycsw:Keywords: comma delimited list of keywords
* pycsw:Links: structure of links in the format “name,description,protocolurl[*,,,[*,,,]]”
Values of mappings can be derived from the following mechanisms:
* text fields
* Python datetime.datetime or datetime.date objects

 Python functions

24 Chapter 6. Administration

http://en.wikipedia.org/wiki/Well-known_text
http://en.wikipedia.org/wiki/Well-known_text#Variations

pycsw Documentation, Release 2.4.2

Further information is provided in pycsw/config.py:MD_CORE_MODEL.

6.9. Mapping to an Existing Repository 25

pycsw Documentation, Release 2.4.2

26 Chapter 6. Administration

CHAPTER /

CSW Support

7.1 Versions

pycsw supports both CSW 2.0.2 and 3.0.0 versions by default. In alignment with the CSW specifications, the default
version returned is the latest supported version. That is, pycsw will always behave like a 3.0.0 CSW unless the client
explicitly requests a 2.0.2 CSW.

The sample URLs below provide examples of how requests behaves against various/missing/default version parame-
ters.

http://localhost/csw # returns 3.0.0 Capabilities
http://localhost/csw?service=CSW&request=GetCapabilities # returns 3.0.0 Capabilities
http://localhost/csw?service=CSW&version=2.0.2&request=GetCapabilities # returns 2.0.
—2 Capabilities
http://localhost/csw?service=CSW&version=3.0.0&request=GetCapabilities # returns 3.0.
—0 Capabilities

7.2 Request Examples

The best place to look for sample requests is within the zests/ directory, which provides numerous examples of all
supported APIs and requests.

Additional examples:
e Data.gov CSW HowTo v2.0

* pycsw Quickstart on OSGeoLive

27

https://gist.github.com/kalxas/6ecb06d61cdd487dc7f9
http://live.osgeo.org/en/quickstart/pycsw_quickstart.html

pycsw Documentation, Release 2.4.2

28 Chapter 7. CSW Support

CHAPTER 8

Distributed Searching

Note: Your server must be able to make outgoing HTTP requests for this functionality.

pycsw has the ability to perform distributed searching against other CSW servers. Distributed searching is disabled by
default; to enable, server. federatedcatalogues must be set. A CSW client must issue a GetRecords request
with csw:DistributedSearch specified, along with an optional hopCount attribute (see subclause 10.8.4.13
of the CSW specification). When enabled, pycsw will search all specified catalogues and return a unified set of search
results to the client. Due to the distributed nature of this functionality, requests will take extra time to process compared
to queries against the local repository.

8.1 Scenario: Federated Search

pycsw deployment with 3 configurations (CSW-1, CSW-2, CSW-3), subsequently providing three (3) endpoints. Each
endpoint is based on an opaque metadata repository (based on theme/place/discipline, etc.). Goal is to perform a single
search against all endpoints.

pycsw realizes this functionality by supporting alternate configurations, and exposes the additional CSW endpoint(s)
with the following design pattern:

CSW-1: http://localhost/pycsw/csw.py?config=CSW-1.cfg
CSW-2: http://localhost/pycsw/csw.py?config=CSW-2.cfg
CSW-3: http://localhost/pycsw/csw.py?config=CSW-3.cfg

...where the ».cfg configuration files are configured for each respective metadata repository. The above CSW
endpoints can be interacted with as usual.

To federate the discovery of the three (3) portals into a unified search, pycsw realizes this functionality by deploying
an additional configuration which acts as the superset of CSW-1, CSW-2, CSW-3:

CSWe-all: http://localhost/pycsw/csw.py?config=CSW-all.cfg

29

pycsw Documentation, Release 2.4.2

This allows the client to invoke one (1) CSW GetRecords request, in which the CSW endpoint spawns the same
GetRecords request to 1..n distributed CSW endpoints. Distributed CSW endpoints are advertised in CSW Capabilities
XML via ows :Constraint:

<ows :OperationsMetadata>

<ows:Constraint name="FederatedCatalogues">
<ows:Value>http://localhost/pycsw/csw.py?config=CSW-1.cfg</ows:Value>
<ows:Value>http://localhost/pycsw/csw.py?config=CSW-2.cfg</ows:Value>
<ows:Value>http://localhost/pycsw/csw.py?config=CSW-3.cfg</ows:Value>
</ows:Constraint>

</ows:OperationsMetadata>

...which advertises which CSW endpoint(s) the CSW server will spawn if a distributed search is requested by the
client.

in the CSW-all configuration:

[server]

federatedcatalogues=http://localhost/pycsw/csw.py?config=CSW-1.cfg,http://localhost/
—pycsw/csw.py?config=CSW-2.cfg, http://localhost/pycsw/csw.py?config=CSW-3.cfg

At which point a CSW client request to CSW-all with distributedsearch=TRUE, while specifying an optional
hopCount. Query network topology:

AnyClient
I
v
CSW-all

|

v
e \
| | |
v v v

CsSWw-1 CSwW-2 CSW-3

As a result, a pycsw deployment in this scenario may be approached on a per ‘theme’ basis, or at an aggregate level.
All interaction in this scenario is local to the pycsw installation, so network performance would not be problematic.

A very important facet of distributed search is as per Annex B of OGC:CSW 2.0.2. Given that all the CSW endpoints
are managed locally, duplicates and infinite looping are not deemed to present an issue.

30 Chapter 8. Distributed Searching

CHAPTER 9

Search/Retrieval via URL (SRU) Support

pycsw supports the Search/Retrieval via URL search protocol implementation as per subclause 8.4 of the OpenGIS
Catalogue Service Implementation Specification.

SRU support is enabled by default. HTTP GET requests must be specified with mode=sru for SRU requests, e.g.:

http://localhost/pycsw/csw.py?mode=sru&operation=searchRetrieve&query=£foo

See http://www.loc.gov/standards/sru/simple.html for example SRU requests.

31

http://www.loc.gov/standards/sru/
http://www.loc.gov/standards/sru/simple.html

pycsw Documentation, Release 2.4.2

32 Chapter 9. Search/Retrieval via URL (SRU) Support

cHAaPTER 10

OpenSearch Support

pycsw supports the OGC OpenSearch Geo and Time Extensions 1.0 standard via the following conformance classes:
* Core (GeoSpatial Service) { searchTerms}, {geo:box}, {startIndex}, {count}
e Temporal Search core {time:start}, {time:end}

OpenSearch support is enabled by default. HTTP requests must be specified with mode=opensearch in the base
URL for OpenSearch requests, e.g.:

http://localhost/pycsw/csw.py?mode=opensearch&service=CSW&version=2.0.2&
—request=GetCapabilities

This will return the Description document which can then be autodiscovered.

33

http://www.opengeospatial.org/standards/opensearchgeo
http://www.opensearch.org/Specifications/OpenSearch/1.1#Autodiscovery

pycsw Documentation, Release 2.4.2

34 Chapter 10. OpenSearch Support

cHAPTER 11

OAI-PMH Support

pycsw supports the The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) standard.

OAI-PMH OpenSearch support is enabled by default. HTTP requests must be specified with mode=ocaipmh in the
base URL for OAI-PMH requests, e.g.:

http://localhost/pycsw/csw.py?mode=caipmh&verb=Identify

See http://www.openarchives.org/OAl/openarchivesprotocol.html for more information on OAI-PMH as well as re-
quest / reponse examples.

35

http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.openarchives.org/OAI/openarchivesprotocol.html

pycsw Documentation, Release 2.4.2

36 Chapter 11. OAI-PMH Support

cHAPTER 12

JSON Support

pycsw supports JSON support for DescribeRecord, GetRecords and GetRecordById requests. Adding
outputFormat=application/json to your CSW request will return the response as a JSON representation.

37

pycsw Documentation, Release 2.4.2

38 Chapter 12. JSON Support

cHAPTER 13

SOAP

pycsw supports handling of SOAP encoded requests and responses as per subclause 10.3.2 of OGC:CSW 2.0.2. SOAP
request examples can be found in tests/index.html.

39

pycsw Documentation, Release 2.4.2

40 Chapter 13. SOAP

cHAPTER 14

XML Sitemaps

XML Sitemaps can be generated by running:

$ pycsw—admin.py -c gen_sitemap -f default.cfg -o sitemap.xml

The sitemap.xml file should be saved to an an area on your web server (parallel to or above your pycsw install
location) to enable web crawlers to index your repository.

41

http://www.sitemaps.org/

pycsw Documentation, Release 2.4.2

42 Chapter 14. XML Sitemaps

cHAPTER 15

Transactions

pycsw has the ability to process CSW Harvest and Transaction requests (CSW-T). Transactions are disabled by default;
to enable, manager.transactions must be set to true. Access to transactional functionality is limited to IP
addresses which must be set in manager.allowed_ips.

15.1 Supported Resource Types

For transactions and harvesting, pycsw supports the following metadata resource types by default:

Resource Type Namespace Transaction | Harvest
Dublin Core http://www.opengis.net/cat/csw/2.0.2 | yes yes
FGDC http://www.opengis.net/cat/csw/csdgm | yes yes
GMO03 http://www.interlis.ch/INTERLIS2.3 yes yes
ISO 19139 http://www.isotc21ll.0rg/2005/gmd yes yes
ISO GMI http://www.isotc21l.0rg/2005/gmi yes yes
OGC:CSW 2.0.2 http://www.opengis.net/cat/csw/2.0.2 yes
OGC:WMS 1.1.1/1.3.0 http://www.opengis.net/wms yes
OGC:WMTS 1.0.0 http://www.opengis.net/wmts/1.0 yes
OGC:WFS 1.0.0/1.1.0/2.0.0 | http://www.opengis.net/wfs yes
OGC:WCS 1.0.0 http://www.opengis.net/wcs yes
OGC:WPS 1.0.0 http://www.opengis.net/wps/1.0.0 yes
OGC:SOS 1.0.0 http://www.opengis.net/sos/1.0 yes
OGC:SOS 2.0.0 http://www.opengis.net/sos/2.0 yes
WAF urn:geoss:urn yes

Additional metadata models are supported by enabling the appropriate Profile Plugins.

Note: For transactions to be functional when using SQLite3, the SQLite3 database file (and its parent directory)
must be fully writable. For example:

43

http://seabass.ieee.org/groups/geoss/index.php?option=com_sir_200&Itemid=157&ID=183

pycsw Documentation, Release 2.4.2

mkdir /path/data
chmod 777 /path/data
chmod 666 test.db
mv test.db /path/data

v »r A

For CSW-T deployments, it is strongly advised that this directory reside in an area that is not accessible by HTTP.

15.2 Harvesting

Note: Your server must be able to make outgoing HTTP requests for this functionality.

pycsw supports the CSW-T Harvest operation. Records which are harvested require to setup a cronjob to period-
ically refresh records in the local repository. A sample cronjob is available in etc/harvest-all.cron which
points to pycsw—-admin. py (you must specify the correct path to your configuration). Harvest operation results can
be sent by email (viamailto:) or ftp (via ftp://) if the Harvest request specifies csw:ResponseHandler.

Note: For csw:ResponseHandler values using the mailto: protocol, you must have server.smtp_host
set in your configuration.

15.2.1 OGC Web Services

When harvesting OGC web services, requests can provide the base URL of the service as part of the Harvest request.
pycsw will construct a GetCapabilities request dynamically.

When harvesting other CSW servers, pycsw pages through the entire CSW in default increments of 10. This value can
be modified via the manager.csw_harvest_pagesize configuration option. It is strongly advised to use the
csw:ResponseHandler parameter for harvesting large CSW catalogues to prevent HTTP timeouts.

15.3 Transactions

pycsw supports 3 modes of the Transaction operation (Insert, Update, Delete):
¢ Insert: full XML documents can be inserted as per CSW-T
» Update: updates can be made as full record updates or record properties against a csw:Constraint
* Delete: deletes can be made against a csw:Constraint

Transaction operation results can be sent by email (viamailto:) or ftp (via ftp://) if the Transaction request
specifies csw:ResponseHandler.

The Testing contain CSW-T request examples.

44 Chapter 15. Transactions

cHAPTER 16

Repository Filters

pycsw has the ability to perform server side repository / database filters as a means to mask all CSW requests to query
against a specific subset of the metadata repository, thus providing the ability to deploy multiple pycsw instances
pointing to the same database in different ways via the repository. filter configuration option.

Repository filters are a convenient way to subset your repository at the server level without the hassle of creating
proper database views. For large repositories, it may be better to subset at the database level for performance.

16.1 Scenario: One Database, Many Views

Imagine a sample database table of records (subset below for brevity):

identifier | parentidentifier | title | abstract
1 33 fool | barl
2 33 foo2 | bar2
3 55 foo3 | bar3
4 55 fool | barl
5 21 foo5 | bar5
5 21 foo6 | bar6

A default pycsw instance (with no repository.filters option) will always process CSW requests against the
entire table. So a CSW GetRecords filter like:

<ogc:Filter>
<ogc:PropertyIsEqualTo>
<ogc:PropertyName>apiso:Title</ogc:PropertyName>
<ogc:Literal>fool</ogc:Literal>
</ogc:PropertyIsEqualTo>
</ogc:Filter>

... will return:

45

pycsw Documentation, Release 2.4.2

identifier | parentidentifier | title | abstract
1 33 fool | barl
4 55 fool | barl

Suppose you wanted to deploy another pycsw instance which serves metadata from the same database, but only from
a specific subset. Here we set the repository.filter option:

[repository]
database=sqglite:///records.db
filter=pycsw:ParentIdentifier = '33"

The same CSW GetRecords filter as per above then yields the following results:

identifier | parentidentifier | title | abstract
1 33 fool | barl

Another example:

[repository]
database=sqglite:///records.db
filter=pycsw:ParentIdentifier != '33"

The same CSW GetRecords filter as per above then yields the following results:

identifier | parentidentifier | title | abstract
4 55 fool | barl

The repository.filter option accepts all core queryables set in the pycsw core model (see pycsw.config.
StaticContext.md_core_model for the complete list).

46 Chapter 16. Repository Filters

cHAPTER 17

Profile Plugins

17.1 Overview

pycsw allows for the implementation of profiles to the core standard. Profiles allow specification of additional metadata
format types (i.e. ISO 19139:2007, NASA DIF, INSPIRE, etc.) to the repository, which can be queried and presented
to the client. pycsw supports a plugin architecture which allows for runtime loading of Python code.

All profiles must be placed in the pycsw/plugins/profiles directory.

17.2 Requirements

pycsw/
plugins/
__init__ .py # empty
profiles/ # directory to store profiles
__init__ .py # empty
profile.py # defines abstract profile object (properties and methods) and,
—functions to load plugins
apiso/ # profile directory
__init__ .py # empty
apiso.py # profile code
supporting files, etc.

17.3 Abstract Base Class Definition

All profile code must be instantiated as a subclass of profile.Profile. Below is an example to add a Foo profile:

from pycsw.plugins.profiles import profile

(continues on next page)

47

pycsw Documentation, Release 2.4.2

(continued from previous page)

class FooProfile(profile.Profile):

profile.Profile.__init__ (self,

name="'foo',

version='1.0.3",

title='My Foo Profile',
url='http://example.org/fooprofile/docs"',
namespace='http://example.org/foons"',
typename="'foo:RootElement"',
outputschema=http://example.org/foons',
prefixes=['foo'],

model=model,

core_namespaces=namespaces,
added_namespaces={"'foo': 'http://example.org/foons'}
repository=REPOSITORY['foo:RootElement'])

Your profile plugin class (FooProfile) must implement all methods as per profile.Profile. Profile methods
must always return 1xml.etree.Element types, or None.

17.4 Enabling Profiles

All profiles are disabled by default. To specify profiles at runtime, set the server.profiles value in the Config-
uration to the name of the package (in the pycsw/plugins/profiles directory). To enable multiple profiles,
specify as a comma separated value (see Configuration).

17.5 Testing

Profiles must add examples to the 7esting interface, which must provide example requests specific to the profile.

48

Chapter 17. Profile Plugins

cHAPTER 18

Supported Profiles

18.1 ISO Metadata Application Profile (1.0.0)

18.1.1 Overview

The ISO Metadata Application Profile (APISO) is a profile of CSW 2.0.2 which enables discovery of geospatial
metadata following ISO 19139:2007 and ISO 19119:2005/PDAM 1.

18.1.2 Configuration

No extra configuration is required.

18.1.3 Querying

¢ typename: gmd:MD_Metadata

* outputschema: http://www.isotc211.0rg/2005/gmd

18.1.4 Enabling APISO Support

To enable APISO support, add apiso to server.profiles as specified in Configuration.

18.1.5 Testing

A testing interface is available in tests/index.html which contains tests specific to APISO to demonstrate
functionality. See 7esting for more information.

49

pycsw Documentation, Release 2.4.2

18.2 INSPIRE Extension

18.2.1 Overview

APISO includes an extension for enabling INSPIRE Discovery Services 3.0 support. To enable the INSPIRE extension
to APISO, create a [metadata:inspire] section in the main configuration with enabled set to t rue.

18.2.2 Configuration

[metadata:inspire]
¢ enabled: whether to enable the INSPIRE extension (t rue or false)

* languages_supported: supported languages (see http://inspire.ec.europa.eu/schemas/common/1.0/enums/
enum_eng.xsd, simpleType euLanguageIS06392B)

* default_language: the default language (see http://inspire.ec.europa.eu/schemas/common/1.0/enums/enum_
eng.xsd, simpleType euLanguageIS06392B)

* date: date of INSPIRE metadata offering (in ISO 8601 format)

* gemet_keywords: a comma-seperated keyword list of GEMET INSPIRE theme keywords about the service (see
http://inspire.ec.europa.eu/schemas/common/1.0/enums/enum_eng.xsd, complexType inspireTheme_eng)

» conformity_service: the level of INSPIRE conformance for spatial data sets and services (conformant,
notConformant, notEvaluated)

¢ contact_organization: the organization name responsible for the INSPIRE metadata
 contact_email: the email address of entity responsible for the INSPIRE metadata

* temp_extent: temporal extent of the service (in ISO 8601 format). Either a single date (i.e. yyyy—-mm—-dd), or
an extent (i.e. yyyy—-mm—-dd/yyyy-mm—dd)

18.3 CSW-ebRIM Registry Service - Part 1: ebRIM profile of CSW

18.3.1 Overview

The CSW-ebRIM Registry Service is a profile of CSW 2.0.2 which enables discovery of geospatial metadata following
the ebXML information model.

18.3.2 Configuration

No extra configuration is required.

18.3.3 Querying

* typename: rim:RegistryObject

* outputschema: urn:ocasis:names:tc:ebxml-regrep:xsd:rim:3.0

50 Chapter 18. Supported Profiles

http://inspire.jrc.ec.europa.eu/documents/Network_Services/TechnicalGuidance_DiscoveryServices_v3.0.pdf
http://inspire.ec.europa.eu/schemas/common/1.0/enums/enum_eng.xsd
http://inspire.ec.europa.eu/schemas/common/1.0/enums/enum_eng.xsd
http://inspire.ec.europa.eu/schemas/common/1.0/enums/enum_eng.xsd
http://inspire.ec.europa.eu/schemas/common/1.0/enums/enum_eng.xsd
http://en.wikipedia.org/wiki/ISO_8601
http://www.eionet.europa.eu/gemet/inspire_themes
http://inspire.ec.europa.eu/schemas/common/1.0/enums/enum_eng.xsd
http://en.wikipedia.org/wiki/ISO_8601

pycsw Documentation, Release 2.4.2

18.3.4 Enabling ebRIM Support

To enable ebRIM support, add ebrimto server.profiles as specified in Configuration.

18.3.5 Testing

A testing interface is available in tests/index.html which contains tests specific to ebRIM to demonstrate
functionality. See 7esting for more information.

18.3. CSW-ebRIM Registry Service - Part 1: ebRIM profile of CSW 51

pycsw Documentation, Release 2.4.2

52 Chapter 18. Supported Profiles

cHAPTER 19

Repository Plugins

19.1 Overview

pycsw allows for the implementation of custom repositories in order to connect to a backend different from the pycsw’s
default. This is especially useful when downstream applications manage their own metadata model/database/document
store and want pycsw to connect to it directly instead of using pycsw’s default model, thus creating duplicate repos-
itories which then require syncronization/accounting. Repository plugins enable a single metadata backend which is
independent from the pycsw setup. pycsw thereby becomes a pure wrapper around a given backend in providing CSW
and other APIs atop a given application.

All outputschemas must be placed in the pycsw/plugins/outputschemas directory.

19.2 Requirements

Repository plugins:

can be developed and referenced / connected external to pycsw
must be accessible within the PYTHONPATH of a given application
must implement pycsw’s pycsw.core.repository.Repository properties and methods

must be specified in the pycsw Configuration as a class reference (e.g. path.to.repo_plugin.
MyRepository)

must minimally implement the query_insert, query_domain, query_ids, and query methods

19.3 Configuration

set pycsw’s repository. source setting to the class which implements the custom repository:

53

pycsw Documentation, Release 2.4.2

[repository]
mappings='path.to.repo_plugin.MyRepository'

54

Chapter 19. Repository Plugins

cHAPTER 20

Output Schema Plugins

20.1 Overview

pycsw allows for extending the implementation of output schemas to the core standard. outputschemas allow for a
client to request metadata in a specific format (ISO, Dublin Core, FGDC, NASA DIF Atom and GMO3 are default).

All outputschemas must be placed in the pycsw/plugins/outputschemas directory.

20.2 Requirements

pycsw/

plugins/

__init__ .py # empty

outputschemas/
__init_ _.py # __all__ is a list of all provided outputschemas
atom.py # default
dif.py # default
fgdc.py # default
gm03.py # default

20.3 Implementing a new outputschema

Create a file in pycsw/plugins/output schemas, which defines the following:
* NAMESPACE: the default namespace of the outputschema which will be advertised
* NAMESPACE: dict of all applicable namespaces to outputschema
e XPATH_MAPPINGS: dict of pycsw core queryables mapped to the equivalent XPath of the outputschema

* write_record: function which returns a record as an 1xml.etree.Element object

55

pycsw Documentation, Release 2.4.2

Add the name of the fileto __init___.py:__all__. The new outputschema is now supported in pycsw.

20.4 Testing

New outputschemas must add examples to the Testing interface, which must provide example requests specific to the
profile.

56 Chapter 20. Output Schema Plugins

CHAPTER 21

GeoNode Configuration

GeoNode (http://geonode.org/) is a platform for the management and publication of geospatial data. It brings together
mature and stable open-source software projects under a consistent and easy-to-use interface allowing users, with little
training, to quickly and easily share data and create interactive maps. GeoNode provides a cost-effective and scalable
tool for developing information management systems. GeoNode uses CSW as a cataloguing mechanism to query and
present geospatial metadata.

pycsw supports binding to an existing GeoNode repository for metadata query. The binding is read-only (transactions
are not in scope, as GeoNode manages repository metadata changes in the application proper).

21.1 GeoNode Setup

pycsw is enabled and configured by default in GeoNode, so there are no additional steps required once GeoNode is
setup. See the CATALOGUE and PYCSW settings.py entries at http://docs.geonode.org/en/latest/developers/reference/
django-apps.html#id1 for customizing pycsw within GeoNode.

The GeoNode plugin is managed outside of pycsw within the GeoNode project.

57

http://geonode.org/
http://docs.geonode.org/en/latest/developers/reference/django-apps.html#id1
http://docs.geonode.org/en/latest/developers/reference/django-apps.html#id1
http://docs.geonode.org/en/latest/developers/reference/django-apps.html#id1

pycsw Documentation, Release 2.4.2

58 Chapter 21. GeoNode Configuration

CHAPTER 22

HHypermap Configuration

HHypermap (Harvard Hypermap) Registry (https://github.com/cga-harvard/HHypermap) is an application that man-
ages OWS, Esri REST, and other types of map service harvesting, and maintains uptime statistics for services and
layers. HHypermap Registry will publish to HHypermap Search (based on Lucene) which provides a fast search and
visualization environment for spatio-temporal materials.

HHypermap uses CSW as a cataloguing mechanism to ingest, query and present geospatial metadata.

pycsw supports binding to an existing HHypermap repository for metadata query.

22.1 HHypermap Setup

pycsw is enabled and configured by default in HHypermap, so there are no additional steps required once HHypermap
is setup. See the REGISTRY_PYCSW hypermap/settings.py entries for customizing pycsw within HHypermap.

The HHypermap plugin is managed outside of pycsw within the HHypermap project. HHypermap settings must ensure
that REGISTRY_PYCSW|['repository'] ['source'] is set to‘‘hypermap.search.pycsw_repository*‘.

59

https://github.com/cga-harvard/HHypermap
https://github.com/cga-harvard/HHypermap/blob/master/hypermap/settings.py

pycsw Documentation, Release 2.4.2

60 Chapter 22. HHypermap Configuration

CHAPTER 23

Open Data Catalog Configuration

Open Data Catalog (https://github.com/azavea/Open-Data-Catalog/) is an open data catalog based on Django, Python
and PostgreSQL. It was originally developed for OpenDataPhilly.org, a portal that provides access to open data sets,
applications, and APIs related to the Philadelphia region. The Open Data Catalog is a generalized version of the
original source code with a simple skin. It is intended to display information and links to publicly available data in
an easily searchable format. The code also includes options for data owners to submit data for consideration and for
registered public users to nominate a type of data they would like to see openly available to the public.

pycsw supports binding to an existing Open Data Catalog repository for metadata query. The binding is read-only
(transactions are not in scope, as Open Data Catalog manages repository metadata changes in the application proper).

23.1 Open Data Catalog Setup

Open Data Catalog provides CSW functionality using pycsw out of the box (installing ODC will also install
pycsw). Settings are defined in https://github.com/azavea/Open-Data-Catalog/blob/master/OpenDataCatalog/settings.
py#L165.

ODC settings must ensure that REGISTRY_PYCSW['repository']['source'] is set
to‘ ‘hypermap.search.pycsw_repository‘*.

At this point, pycsw is able to read from the Open Data Catalog repository using the Django ORM.

61

https://github.com/azavea/Open-Data-Catalog/
https://github.com/azavea/Open-Data-Catalog/blob/master/OpenDataCatalog/settings.py#L165
https://github.com/azavea/Open-Data-Catalog/blob/master/OpenDataCatalog/settings.py#L165

pycsw Documentation, Release 2.4.2

62 Chapter 23. Open Data Catalog Configuration

CHAPTER 24

CKAN Configuration

CKAN (http://ckan.org) is a powerful data management system that makes data accessible — by providing tools to
streamline publishing, sharing, finding and using data. CKAN is aimed at data publishers (national and regional
governments, companies and organizations) wanting to make their data open and available.

ckanext-spatial is CKAN’s geospatial extension. The extension adds a spatial field to the default CKAN dataset
schema, using PostGIS as the backend. This allows to perform spatial queries and display the dataset extent on
the frontend. It also provides harvesters to import geospatial metadata into CKAN from other sources, as well as
commands to support the CSW standard. Finally, it also includes plugins to preview spatial formats such as GeoJSON.

24.1 CKAN Setup

Installation and configuration Instructions are provided as part of the ckanext-spatial documentation.

63

http://ckan.org
https://github.com/okfn/ckanext-spatial
http://docs.ckan.org/projects/ckanext-spatial/en/latest/csw.html

pycsw Documentation, Release 2.4.2

64 Chapter 24. CKAN Configuration

CHAPTER 25

API

Python applications can integrate pycsw into their custom workflows. This allows for seamless integate within frame-
works like Flask and Django

Below are examples of where using the API (as opposed to the default WSGI/CGI services could be used:
* configuration based on a Python dict, or stored in a database
* downstream request environment / framework (Flask, Django)
* authentication or authorization logic

* forcing CSW version 2.0.2 as default

25.1 Simple Flask Example

import logging
from flask import Flask, request

from pycsw import version as pycsw_version
from pycsw.server import Csw

LOGGER = logging.getLogger (name)
APP = Flask(_ name_)

QAPP.route('/csw')
def csw_wrapper () :
mn HCSW Wrapper" mim
LOGGER.info ('Running pycsw %s', pycsw_version)

pycsw_config = some_dict # really comes from somewhere

initialize pycsw

(continues on next page)

65

pycsw Documentation, Release 2.4.2

(continued from previous page)

pycsw_config: either a ConfigParser object or a dict of

#
the pycsw configuration

#

env: dict of (HTTP) environment
#

#

version: defaults to '3.0.0'
my_csw = Csw(pycsw_config, request

dispatch the request

http_status_code, response = my_csw.dispatch_wsgi ()

return response, http_status_code,

.environ,

(defaults to os.environ)

{'Content-type':

version='2.0.2")

csw.contenttype}

66

Chapter 25. API

CHAPTER 20

Testing

Pycsw uses pytest for managing its automated tests. There are a number of test suites that perform mostly functional
testing. These tests ensure that pycsw is compliant with the various supported standards. There is also a growing set of
unit tests. These focus on smaller scope testing, in order to verify that individual bits of code are working as expected.

Tests can be run locally as part of the development cycle. They are also run on pycsw’s Travis continuous integration
server against all pushes and pull requests to the code repository.

26.1 OGC CITE

In addition to pycsw’s own tests, all public releases are also tested via the OGC Compliance & Interoperability Testing
& Evaluation Initiative (CITE). The pycsw wiki documents CITE testing procedures and status.

26.2 Functional test suites

Currently most of pycsw’s tests are functional tests. This means that each test case is based on the requirements
mandated by the specifications of the various standards that pycsw implements. These tests focus on making sure that
pycsw works as expected.

Each test follows the same workflow:
* Create a new pycsw instance with a custom configuration and data repository for each suite of tests;
* Perform a series of GET and POST requests to the running pycsw instance;

» Compare the results of each request against a previously prepared expected result. If the test result matches the
expected outcome the test passes, otherwise it fails.

A number of different test suites exist under tests/functionaltests/suites. Each suite specifies the fol-
lowing structure:

* A mandatory default .cfqg file with the pycsw configuration that must be used by the test suite;

* A mandatory expected/ directory containing the expected results for each request;

67

http://pytest.org/latest/
http://travis-ci.org/geopython/pycsw
http://cite.opengeospatial.org/
http://cite.opengeospatial.org/
https://github.com/geopython/pycsw/wiki/OGC-CITE-Compliance
https://en.wikipedia.org/wiki/Functional_testing

pycsw Documentation, Release 2.4.2

* An optional data/ directory that contains .xml files with testing data that is to be loaded into the suite’s
database before running the tests. The presence of this directory and its contents have the following meaning
for tests:

— If data/ directory is present and contains files, they will be loaded into a new database for running the
tests of the suite;

— If data/ directory is present and does not contain any data files, a new empty database is used in the tests;
— If data/ directory is absent, the suite will use a database populated with test data from the CITE suite.
* Anoptional get /requests. txt file that holds request parameters used for making HTTP GET requests.
Each line in the file must be formatted with the following scheme:
test_id,request_query_string
For example:
TestGetCapabilities,service=CSW &version=2.0.2&request=GetCapabilities
When tests are run, the fest_id is used for naming each test and for finding the expected result.

* An optional post / directory that holds . xm1 files used for making HTTP POST requests

26.2.1 Test identifiers

Each test has an identifier that is built using the following rule:
<test_function>[<suite_name>_<http_method>_<test_name>]
For example:

test_suites[default_post_GetRecords-end]

26.2.2 Functional tests’ implementation

Functional tests are generated for each suite directory present under tests/functionaltests/suites. Test generation uses
pytest’s pytest_generate_tests function. This function is implemented in tests/functionaltests/conftest.py. It provides an
automatic parametrization of the fests/functionaltests/test_suites_functional:test_suites function. This parametrization
causes the generation of a test for each of the GET and POST requests defined in a suite’s directory.

26.2.3 Adding New Tests

To add tests to an existing suite:
e for HTTP POST tests, add XML documents to tests/functionaltests/suites/<suite>/post

e for HTTP GET tests, add tests (one per line) to tests/functionaltests/suites/<suite>/get/
requests.txt

To add a new test suite:
* Create a new directory under tests/functionaltests/suites (e.g. foo)
* Create a new configuration in tests/suites/foo/default.cfg
* Populate HTTP POST requests in tests/suites/foo/post

* Populate HTTP GET requests in tests/suites/foo/get/requests.txt

68 Chapter 26. Testing

http://docs.pytest.org/en/latest/parametrize.html#basic-pytest-generate-tests-example

pycsw Documentation, Release 2.4.2

« If the test suite requires test data, create tests/suites/foo/data and store XML files there. These will
be inserted in the test catalogue at test runtime

» Use pytest or tox as described above in order to run the tests

The new test suite database will be created automatically and used as part of tests.

26.3 Unit tests

pycsw also features unit tests. These deal with testing the expected behaviour of individual functions.

The usual implementation of unit tests is to import the function/method under test, run it with a set of known arguments
and assert that the result matches the expected outcome.

Unit tests are defined in pycsw/tests/unittests/<module_name>.

pycsw’s unit tests are marked with the unit marker. This makes it easy to run them in isolation:

running only the unit tests (not the functional ones)
py.test -m unit

26.4 Running tests

Since pycsw uses pytest, tests are run with the py . test runner. A basic test run can be made with:

’py.test

This command will run all tests and report on the number of successes, failures and also the time it took to run them.
The py.test command accepts several additional parameters that can be used in order to customize the execution of
tests. Look into pytest’s invocation documentation for a more complete description. You can also get a description of
the available parameters by running:

py.test ——-help

26.4.1 Running specific suites and test cases

py-test allows tagging tests with markers. These can be used to selectively run some tests. pycsw uses two markers:
* unit - run only inut tests
e functional- run onyl functional tests

Markers can be specified by using the -m <marker_name> flag.

py.test -m functional # run only functional tests

You can also use the -~k <name_expression> flag to select which tests to run. Since each test’s name includes
the suite name, http method and an identifier for the test, it is easy to run only certain tests.

py.test -k "apiso and GetRecords" # run only tests from the apiso suite that have_
—GetRecords in their name

py-test -k "post and GetRecords" # run only tests that use HTTP POST and GetRecords,_,
—1in their name

py.test -k "not harvesting" # run all tests except those from the harvesting suite

26.3. Unit tests 69

http://pytest.org/latest/
http://docs.pytest.org/en/latest/usage.html

pycsw Documentation, Release 2.4.2

The —m and -k flags can be combined.

26.4.2 Exiting fast

The ——exitfirst (or —x) flag can be used to stop the test runner immediately as soon as a test case fails.

py.test ——exitfirst

26.4.3 Seeing more output

There are three main ways to get more output from running tests:
¢ The ——verbose (or —v) flag;
* The -—capture=no flag - Messages sent to stdout by a test are not suppressed;

e The ——pycsw—1loglevel flag - Sets the log level of the pycsw instance under test. Set this value to debug
in order to see all debug messages sent by pycsw while processing a request.

py.test ——-verbose
py.test ——pycsw-loglevel=debug
py.test -v ——capture=no —-pycsw-loglevel=debug

26.4.4 Comparing results with difflib instead of XML c14n

The functional tests compare results with their expected values by using [XML canonicalisation - XML c14n](https:
/lwww.w3.0org/TR/xml-c14n/). Alternatively, you can call py.test with the ——functional-prefer—-diffs flag.
This will enable comparison based on Python’s di ££1ib. Comparison is made on a line-by-line basis and in case of
failure, a unified diff will be printed to standard output.

py.test —m functional -k 'harvesting' -—-functional-prefer-diffs

26.4.5 Saving test results for disk

The result of each functional test can be saved to disk by using the ——functional-save-results-directory
option. Each result file is named after the test identifier it has when running with pytest.

py.test —m functional -k 'not harvesting' --functional-save-results-directory=/tmp/
—pycsw-test-results

26.4.6 Test coverage

Use the —cov pycsw flag in order to see information on code coverage. It is possible to get output in a variety of
formats.

py.test ——cov pycsw

70 Chapter 26. Testing

https://www.w3.org/TR/xml-c14n/
https://www.w3.org/TR/xml-c14n/

pycsw Documentation, Release 2.4.2

26.4.7 Specifying a timeout for tests

The —timeout <seconds> option can be used to specify that if a test takes more than <seconds> to run it is considered
to have failed. Seconds can be a float, so it is possibe to specify sub-second timeouts

py.test ——timeout=1.5

26.4.8 Linting with flake8

Use the —flake8 flag to also check if the code complies with Python’s style guide

py.test ——flake8

26.4.9 Testing multiple Python versions

For testing multiple Python versions and configurations simultaneously you can use tox. pycsw includes a fox.ini file
with a suitable configuration. It can be used to run tests against multiple Python versions and also multiple database
backends. When running fox you can send arguments to the py.fest runner by using the invocation tox <tox arguments>
— <py.test arguments>. Examples:

install tox on your system
sudo pip install tox

run all tests on multiple Python versions against all databases,
with default arguments
tox

run tests only with python2.7 and using sqglite as backend
tox -e py27-sqglite

run only csw30 suite tests with python3.5 and postgresqgl as backend
tox —e py35-postgresgl —— -k 'csw30'

26.4.10 Web Testing

You can also use the pycsw tests via your web browser to perform sample requests against your pycsw install. The
tests are is located in tests/. To generate the HTML page:

$ paver gen_tests_html

Then navigate to http://host/path/to/pycsw/tests/index.html.

26.4. Running tests 4

https://tox.readthedocs.io

pycsw Documentation, Release 2.4.2

72 Chapter 26. Testing

CHAPTER 27

pycsw Migration Guide

This page provides migration support across pycsw versions over time to help with pycsw change management.

27.1 pycsw 1.x to 2.0 Migration

* the default CSW version is now 3.0.0. CSW clients need to explicitly specify version=2.0.2 for CSW 2
behaviour. Also, pycsw administrators can use a WSGI wrapper to the pycsw API to force version=2.0.2
on init of pycsw.server.Csw from the server. See CSW Support for more information.

* pycsw.server.Csw.dispatch_wsgi () previously returned the response content as a string. 2.0.0 in-
troduces a compatability break to additionally return the HTTP status code along with the response as a list

from pycsw.server import Csw
my_csw

Csw (my_dict) # add: env=some_environ_dict, version='2.0.2" if preferred

using pycsw 1.x
response = my_csw.dispatch_wsgi ()

using pycsw 2.0
http_status_code, response = my_csw.dispatch_wsgi ()

covering either pycsw version
content = csw.dispatch_wsgi ()

pycsw 2.0 has an API break:

pycsw < 2.0: content = xml_response

pycsw >= 2.0: content = [http_ status_code, content]

deal with the API break

if isinstance(content, list): # pycsw 2.0+
http_response_code, response = content

See API for more information.

73

pycsw Documentation, Release 2.4.2

74 Chapter 27. pycsw Migration Guide

CHAPTER 28

Cataloguing and Metadata Tools

28.1 CSW Clients

* Geoportal CSW Clients
* OWSLib
* MetaSearch (QGIS plugin)

28.2 CSW Servers

* deegree
» eXcat

* GeoNetwork opensource

28.3 Metadata Editing Tools

» CatMDEdit

« EUOSME

* GIMED

* Metatools (QGIS plugin)
QSphere (QGIS plugin)

75

https://github.com/Esri/geoportal-server/wiki/Geoportal-CSW-Clients
https://geopython.github.io/OWSLib
https://hub.qgis.org/wiki/quantum-gis/MetaSearch
http://qgis.org/
https://deegree.org/
http://gdsc.nlr.nl/gdsc/en/tools/excat
https://geonetwork-opensource.org/
http://catmdedit.sourceforge.net/
https://joinup.ec.europa.eu/software/euosme/description
http://sourceforge.net/projects/gimed/
http://hub.qgis.org/projects/metatools
http://qgis.org/
http://hub.qgis.org/plugins/qsphere
http://qgis.org/

pycsw Documentation, Release 2.4.2

76 Chapter 28. Cataloguing and Metadata Tools

CHAPTER 29

Support

29.1 Community

Please see the Community page for information on the pycsw community, getting support, and how to get involved.

77

/community.html

pycsw Documentation, Release 2.4.2

78 Chapter 29. Support

cHAPTER 30

Contributing to pycsw

The pycsw project openly welcomes contributions (bug reports, bug fixes, code enhancements/features, etc.). This
document will outline some guidelines on contributing to pycsw. As well, the pycsw community is a great place to get
an idea of how to connect and participate in pycsw community and development.

pycsw has the following modes of contribution:
* GitHub Commit Access
* GitHub Pull Requests

30.1 Code of Conduct

Contributors to this project are expected to act respectfully toward others in accordance with the OSGeo Code of
Conduct.

30.2 Contributions and Licensing

Contributors are asked to confirm that they comply with project license guidelines.

30.2.1 GitHub Commit Access

* proposals to provide developers with GitHub commit access shall be emailed to the pycsw-devel mailing list.
Proposals shall be approved by the pycsw development team. Committers shall be added by the project admin

¢ removal of commit access shall be handled in the same manner

» each committer must send an email to the pycsw mailing list agreeing to the license guidelines (see Contributions
and Licensing Agreement Template). This is only required once

 each committer shall be listed in https://github.com/geopython/pycsw/blob/master/COMMITTERS.txt

79

https://pycsw.org/community/
http://www.osgeo.org/code_of_conduct
http://www.osgeo.org/code_of_conduct
https://github.com/geopython/pycsw/blob/master/LICENSE.txt
https://pycsw.org/community#mailing-list
https://github.com/geopython/pycsw/blob/master/COMMITTERS.txt

pycsw Documentation, Release 2.4.2

30.2.2 GitHub Pull Requests

* pull requests can provide agreement to license guidelines as text in the pull request or via email to the pycsw
mailing list (see Contributions and Licensing Agreement Template). This is only required for a contributor’s
first pull request. Subsequent pull requests do not require this step

* pull requests may include copyright in the source code header by the contributor if the contribution is significant
or the contributor wants to claim copyright on their contribution

« all contributors shall be listed at https://github.com/geopython/pycsw/graphs/contributors

* unclaimed copyright, by default, is assigned to the main copyright holders as specified in https://github.com/
geopython/pycsw/blob/master/LICENSE.txt

30.2.3 Contributions and Licensing Agreement Template

Hi all, I'd like to contribute <feature X|bugfix Y|docs|something else> to
pycsw. I confirm that my contributions to pycsw will be compatible with the
pycsw license guidelines at the time of contribution.

30.3 GitHub

Code, tests, documentation, wiki and issue tracking are all managed on GitHub. Make sure you have a GitHub account.

30.4 Code Overview

* the pycsw wiki documents an overview of the codebase

30.5 Documentation

* documentation is managed in docs/, in reStructuredText format
» Sphinx is used to generate the documentation

¢ See the reStructuredText Primer on rST markup and syntax.

30.6 Bugs

pycsw’s issue tracker is the place to report bugs or request enhancements. To submit a bug be sure to specify the pycsw
version you are using, the appropriate component, a description of how to reproduce the bug, as well as what version
of Python and platform. For convenience, you can run pycsw—admin.py —c get_sysprof and copy/paste the
output into your issue.

30.7 Forking pycsw

Contributions are most easily managed via GitHub pull requests. Fork pycsw into your own GitHub repository to be
able to commit your work and submit pull requests.

80 Chapter 30. Contributing to pycsw

https://pycsw.org/community#mailing-list
https://github.com/geopython/pycsw/graphs/contributors
https://github.com/geopython/pycsw/blob/master/LICENSE.txt
https://github.com/geopython/pycsw/blob/master/LICENSE.txt
https://github.com/signup/free
https://github.com/geopython/pycsw/wiki/Code-Architecture
http://sphinx-doc.org/
http://sphinx-doc.org/rest.html
https://github.com/geopython/pycsw/issues
https://github.com/geopython/pycsw/fork

pycsw Documentation, Release 2.4.2

30.8 Development

30.8.1 GitHub Commit Guidelines

» enhancements and bug fixes should be identified with a GitHub issue
e commits should be granular enough for other developers to understand the nature / implications of the change(s)
* for trivial commits that do not need Travis CI to run, include [ci skip] as part of the commit message

* non-trivial Git commits shall be associated with a GitHub issue. As documentation can always be improved,
tickets need not be opened for improving the docs

 Git commits shall include a description of changes

* Git commits shall include the GitHub issue number (i.e. #1234) in the Git commit log message

* all enhancements or bug fixes must successfully pass all OGC CITE tests before they are committed
* all enhancements or bug fixes must successfully pass all 7esting tests before they are committed

 enhancements which can be demonstrated from the pycsw 7esting should be accompanied by example CSW
request XML

30.8.2 Coding Guidelines

* pycsw instead of PyCSW, pyCSW, Pycsw
* always code with PEP 8 conventions

 always run source code through pep8 and pylint, using all pylint defaults except for C0111. sbin/
pycsw—pylint.sh is included for convenience

* for exceptions which make their way to OGC ExceptionReport XML, always specify the appropriate
locator and code parameters

¢ the pycsw wiki documents developer tasks for things like releasing documentation, testing, etc.

30.8.3 Submitting a Pull Request

This section will guide you through steps of working on pycsw. This section assumes you have forked pycsw into your
own GitHub repository.

setup a virtualenv
virtualenv mypycsw && cd mypycsw
./bin/activate
clone the repository locally
git clone git@github.com:USERNAME/pycsw.git
cd pycsw
pip install -e . && pip install -r requirements-standalone.txt
add the main pycsw master branch to keep up to date with upstream changes
git remote add upstream https://github.com/geopython/pycsw.git
git pull upstream master
create a local branch off master
The name of the branch should include the issue number if it exists
git branch issue-72
git checkout issue-72
#

(continues on next page)

30.8. Development 81

https://travis-ci.org/geopython/pycsw
http://www.python.org/dev/peps/pep-0008/
http://www.logilab.org/857
https://github.com/geopython/pycsw/wiki/Developer-Tasks

pycsw Documentation, Release 2.4.2

(continued from previous page)

make code/doc changes

#

git commit —-am 'fix xyz (#72)'
git push origin issue-72

Your changes are now visible on your pycsw repository on GitHub. You are now ready to create a pull request. A
member of the pycsw team will review the pull request and provide feedback / suggestions if required. If changes
are required, make them against the same branch and push as per above (all changes to the branch in the pull request
apply).

The pull request will then be merged by the pycsw team. You can then delete your local branch (on GitHub), and then
update your own repository to ensure your pycsw repository is up to date with pycsw master:

git checkout master
git pull upstream master

82 Chapter 30. Contributing to pycsw

CHAPTER 31

License

The MIT License (MIT)

Copyright (c) 2010-2015 Tom Kralidis Copyright (c) 2011-2015 Angelos Tzotsos Copyright (c) 2012-2015 Adam
Hinz Copyright (c) 2015 Ricardo Garcia Silva

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

31.1 Documentation

The documentation is released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

83

http://creativecommons.org/licenses/by/4.0/

pycsw Documentation, Release 2.4.2

84 Chapter 31. License

CHAPTER 32

Committers

Login(s) Name Email / Contact Area(s)

tomkralidis Tom Kralidis tomkralidis at gmail.com Overall

kalxas Angelos Tzotsos tzotsos at gmail.com INSPIRE, APISO profiles, Packaging
adamhinz Adam Hinz hinz dot adam at gmail.com WSGI/Server Deployment
ricardogsilva | Ricardo Garcia Silva | ricardo.garcia.silva at gmail.com | Overall

85

	Introduction
	Features
	Standards Support
	Supported Operations
	Supported Output Formats
	Supported Output Schemas
	Supported Sorting Functionality
	Supported Filters

	Installation
	System Requirements
	Installing from Source
	Installing from the Python Package Index (PyPi)
	Installing from OpenSUSE Build Service
	Installing on Ubuntu/Mint
	Running on Windows
	Security
	Running on WSGI

	Docker
	Inspect logs
	Using pycsw-admin
	Running custom pycsw containers
	Setting up a development environment with docker

	Configuration
	MaxRecords Handling
	Alternate Configurations

	Administration
	Metadata Repository Setup
	Supported Information Models
	Setting up the Database
	Loading Records
	Exporting the Repository
	Optimizing the Database
	Deleting Records from the Repository
	Database Specific Notes
	Mapping to an Existing Repository

	CSW Support
	Versions
	Request Examples

	Distributed Searching
	Scenario: Federated Search

	Search/Retrieval via URL (SRU) Support
	OpenSearch Support
	OAI-PMH Support
	JSON Support
	SOAP
	XML Sitemaps
	Transactions
	Supported Resource Types
	Harvesting
	Transactions

	Repository Filters
	Scenario: One Database, Many Views

	Profile Plugins
	Overview
	Requirements
	Abstract Base Class Definition
	Enabling Profiles
	Testing

	Supported Profiles
	ISO Metadata Application Profile (1.0.0)
	INSPIRE Extension
	CSW-ebRIM Registry Service - Part 1: ebRIM profile of CSW

	Repository Plugins
	Overview
	Requirements
	Configuration

	Output Schema Plugins
	Overview
	Requirements
	Implementing a new outputschema
	Testing

	GeoNode Configuration
	GeoNode Setup

	HHypermap Configuration
	HHypermap Setup

	Open Data Catalog Configuration
	Open Data Catalog Setup

	CKAN Configuration
	CKAN Setup

	API
	Simple Flask Example

	Testing
	OGC CITE
	Functional test suites
	Unit tests
	Running tests

	pycsw Migration Guide
	pycsw 1.x to 2.0 Migration

	Cataloguing and Metadata Tools
	CSW Clients
	CSW Servers
	Metadata Editing Tools

	Support
	Community

	Contributing to pycsw
	Code of Conduct
	Contributions and Licensing
	GitHub
	Code Overview
	Documentation
	Bugs
	Forking pycsw
	Development

	License
	Documentation

	Committers

